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Abstract

Background: This paper proposed a Simplified Improved Dynamic Round Robin (SIDRR) algorithm that further
improved on some existing Improvements on Round Robin CPU scheduling algorithms; Most of these
improvements on Round Robin rely on arithmetic mean in selecting their Time Quantum (TQ). The arithmetic
mean approach does not adequately represent the data. Aim: the aim of this study is to develop a simplified
dynamic improved Round Robin CPU scheduling algorithm. Method: this study implemented five existing Round
Robin scheduling algorithm using C++. The algorithms are; New Improved Round Robin (NIRR), Dynamic
Average Burst Round Robin (DABRR), Improved Round Robin with Varying time Quantum (IRRVQ), Revamped
Mean Round Robin (RMRR) and Efficient Dynamic Round Robin (EDRR). A new algorithm was also developed
based on the Numeric Outlier Detection technique and geometric mean for dynamic time quantum determination.
The proposed algorithm was compared with the five implemented using parameters such as average turnaround
time, average waiting time and number of context switching. Results: the result of this study showed that the
proposed algorithm performs better than the other five algorithms in terms of Average waiting time, average
turnaround time & number of context switches. This study therefore, recommends the adoption of SIDRR for CPU
scheduling and other emerging areas such as cloud computing resource allocation.

Keywords: CPU scheduling, SIDRR algorithm, Average Turnaround Time, Average Waiting Time, Context
Switching

1. Introduction

Central Processing Unit (CPU) Scheduling is a precise procedural set-plan of selecting which process gets access
to the CPU for execution and once the current process leaves, what sequence others should follow to get the CPU.
The basic idea is to keep the CPU busy as much as possible by executing a user process until it must wait for an
event, and then switch to another process. Scheduling is an important practical problem in industry that is hard to
tackle using traditional optimization methods, due to conflicting requirements, interrelated constraints, and high
computational complexity (Gen & Cheng, 2000). Pati, Korde, and Dey, (2017) asserts that RR scheduling
algorithm (one of the fundamental scheduling algorithms) is one of the most widely used CPU scheduling
algorithms which are implemented in various software systems; used in various operating systems, such as
Windows, Linux and so on. The LINUX operating system’s heartbeat, which is the Kernel, is the engine room
responsible for controlling the computer’s resources and scheduling of users’ jobs so that each one gets its fair
share of system resources, including access to the CPU as well as the peripheral devices like disk and CD-ROM
storage, printers and tape drives (Sobell, 1999). Adekunle, Ogunwobi, Jerry, Efuwape, Ebiesuwa, and Ainam
(2014) in their study “A comparative study of scheduling algorithm for multiprogramming in real time system”
indicates that there is actually no scheduling algorithm satisfying the condition of an ideal algorithm and concluded
that further studies which improve current scheduling algorithms need to be done. This is validated in the study of
Harshita, Subrata, and Ramya, (2017) that asserts that different CPU scheduling algorithms have peculiar
properties favoring a particular class of processes over another. This paper proposes a new algorithm (SIDRR) that
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further improved on some existing Improvements on Round Robin CPU scheduling algorithms; Most of these
improvements on RR rely on arithmetic mean in selecting their Time Quantum (TQ). The arithmetic mean
approach does not adequately represent the data. In this paper existing improvements on Round Robin scheduling
algorithm proposed by the studies of Abdulrazag, Saleh, & Junaidu, (2014) NIRR', Manish & Rashid, (2014)
IRRVQ?, Dash, Sahu, & Samantra, (2015) DABRR?®, Kathuria, Singh, Tiwar, & Prashant, (2016) RMRR", and
Faroog, Shakoor, & Siddique, (2017) EDRR®, were implemented in order to validate the results presented in each
study and to ensure efficient comparative study of these algorithms with the (SIDRR) developed by this study.

2. Related Works

The core part of operating system just like any system, is scheduling. Some commonly used scheduling algorithms
are: First in First Out (FIFO); Shortest Job First (SJF) without preemption; Preemptive SJF; Priority based without
preemption; Preemptive Priority base; Round robin; Multilevel Feedback Queue.

The order in which a process is allocated and its duration is also determined by the algorithm (Jayavarthini,
Chattopadhyay, Banerjee, & Dutta, 2017). Round Robin is particularly designed for time-sharing systems; each
process has a small unit of CPU time (time quantum). This algorithm allows a process in the ready queue to run
until its time quantum finishes, and then executes the next process in the ready queue. It is similar to First Come
First Serve (FCFS) scheduling, but preemption is added to switch between processes. The ready queue is
maintained as a circular queue. The CPU scheduler goes around the ready queue, allocating the CPU to each
process for a time interval of up to 1-time quantum. To implement the Round Robin scheduling, we keep the ready
gueue as a First-In-First-Out (FIFO) queue of processes. New processes are added to the tail of the ready queue.
The CPU scheduler picks the first process from the ready queue, sets a timer to interrupt after 1-time quantum, and
dispatches the process ((Silberschatz, Gagne, & Galvin, 2009); (Mohammed, 2011); (Abdulrazaq, Salisu, Ahmad,
& Saleh, 2014); (Kathuria, Singh, Tiwar, & Prashant, 2016)). Comparative analysis of some improved Round
Robin Scheduling by Musa, Lasisi, and Gokir (2017) asserts that not all improvements are better than earlier
works. The study confirmed DABRR algorithm (Dash, Sahu, & Samantra, 2015) as better than DTSRR algorithm
(Muraleedharan, Antony, & Nandakumar, 2016) and RMRR algorithm (Kathuria, Singh, Tiwar, & Prashant, 2016)
proposed later. In recent time different approaches have been used to increase the performance of CPU scheduling
algorithms.

Manish and Rashid, (2014) Combines the Shortest Job First with conventional RR. The processes are sorted in
ascending order. At every cycle, the shortest burst time is implemented as the time quantum.

Abdulrazag, Saleh, and Junaidu, (2014) Combines First Come First Serve (FCFS) with SIN and conventional RR.
TQ was computed using arithmetic mean.

Dash, Sahu, and Samantra, (2015) introduces Iterative computation of TQ using arithmetic mean at every CPU
cycle. Similarly, Kathuria, Singh, Tiwar, and Prashant, (2016) utilizes arithmetic mean in computing the time
quantum. The algorithm first assigns all burst times for TQ=2 while processes arrives in the Pre-ready queue.
Remaining burst times are moved to ready queue and the mean is compute as TQ at every CPU cycle. the TQ is
computed for remaining burst times. Any running process with remainder less than the TQ is reassigned to
complete execution.

! New Improved Round Robin

2 Improved Round Robin with Varying time Quantum
3 Dynamic Average Burst Round Robin

4 Revamped Mean Round Robin

> Efficient Dynamic Round Robin
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The study by Singh and Dalal (2016) proposed an Improved Dynamic Round Robin (IDRR) for process
scheduling. The time quantum was computed as

TQ = ceiling (\/(mean * max(CPU burst time)) + (median * min(CPU burst time))) 2.1)
The study give concession to SJF. Its TQ relies on both the arithmetic mean and median of the processes.

Farooq, Shakoor, and Siddique, (2017) also gives concession to Shortest Job First (SJF) by benchmarking the TQ
and attempts to selectively run through processes to first execute the smaller tasks before returning CPU to the
remaining larger burst times execution.

Neha and Jiyani (2018) in their study implemented a First Come First Serve (FCFS) with the conventional RR like
Abdulrasaq et al. However, the mode of determining the time quantum was not clearly presented.

Zaidi and Shukla (2018) proposed a round robin with a variable quantum time in cloud computing environment.
There work aimed at improving the machine efficiency and reducing the waiting time, turnaround time, context
switches, response time and overall improving the machine performances. All the cloudlets are arranged in
decreasing order of their burst time. The time quantum is derived by finding the square root of the product of the
median and the highest burst time of the cloudlets. The method also adopts the normal round robin approaches in
which the cloudlets are switched whenever they are unable to finish their task before the quantum time lapse. The
result of the experiment was benchmarked with round robin algorithm considering only two metrics waiting time
and turnaround time. The work performed better than the traditional round robin algorithm.

This study (Kumar, Kumar, Jain & Jain, 2018) presented an algorithm that uses round robin and shortest job first in
order to reduce the turnaround time and waiting time. In their work, a fixed quantum time was used for all the
processes. Whenever any process is unable to finish it task before the quantum time lapse, the process is placed
back on the ready queue and the next process with shortest burst time takes up the CPU but if the process finishes
it task before the quantum time lapse, the CPU can then take up another process with the shortest burst time for
execution. The work was benchmarked with round robin, short job first using turnaround time, waiting time and
context switches. The proposed algorithm performs better than round robin, shortest job first using the metrics
aforementioned.

Fataniya and Patel (2018) presented another approach for scheduling algorithm of round robin using dynamic
guantum time in cloud environment. In their methodology, the quantum time was obtained by taking the mean and
median of all the burst time of the processes. The mean is considered by taking the average of all the burst time
while the median was considered if the result was odd, them the middle number will be the median otherwise, if
the result is even, then the median will be the mean of two central number. It can be observed from the review
above that most of the methodologies adopted relied on arithmetic mean or shortest job first for time quantum
determination. The obvious challenge with arithmetic mean is that the time quantum will always tend towards the
mean if there is an outlying burst time. Also, shortest job first will lead to starvation for jobs with higher burst
time.

3. Methodology

3.1 The proposed SIDRR Algorithm

/IGm: Geometric mean
/ITQ: Time Quantum
/IRQ: Ready Queue
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/Ibt []: array of process’ burst time
/lbt:  bt=|bt[]]
/In: number of process
/IPi:  Process at ith index
/i, j: used as index on Queues
/[Total: Total Burst Time
//Numeric outlier calculations: Median, 1* Quartile Q1
/1 3" Quartile Q3, Inter Quartile Range IQR
/IQR=Q3-Q1
/lInner fences: upper=Q3 + (IQR*1.5), lower=Q1 - (IQR*1.5)
[1] Start
[2] input n™ number of processes
[3] Total=1
[4] make a copy of RQ
[5] Arrange the processes in ascending order
[6] compute Numeric outlier parameters //Median, Q1, Q3, IQR, lower inner fences
[7] check for outlier in the Processes
[8] if (outlier > Q3) {
[9] Assign Q310 TQ
[10] Allocate CPU to run time slice through the processes till n=0
[11]  }else{
[12] 1 (n=1){
[13]  Arrange processes bt [] in ascending order

[14] endif
[15] }}
[16] endif

[17]  move all process with bt>0 to RQ

[18] if (RQ=Null) {

[19] Compute AWT, ATAT, NCS

[20] DISPLAY RESULT

[21] TERMINATE

[22] }else{

[23]  If (outlier>Q3) {

[24] Repeat step and till i=n

[25]  Total*=burst time of process P; provided bt[i]>0
[26] Compute TQ =[]~, Pi

[27] }else{
[28] Compute TQ=[]i~, Pi + Q1
[29] }

[30] Allocate CPU

[31]  If (bt<TQ/2||bt<TQ) {
[32] Re-allocate CPU

[33] If(RQ!=Null) {

[34] Repeat step 30 whilen>0

[35]  i++;
[36] n--;
[371 3}
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Processes are collected in the Ready Queue. A copy of the Ready Queue is made (solely for data set verification
and computation of Numeric outlier parameters), sorted in ascending order, and the median, first Quartile, third
Quartile as well as the Inter Quartile Range are computed. This is used to generate the Inner fences that verify the
processes burst times that possibly skewed the data set. If there exist any outlier candidate in the data set and its
value is greater than Q3, the time quantum is set to the 3" Quartile and all the processes are allotted to the
processor for the period of time quantum; subsequent burst time of processes greater than zero are moved to the
Ready queue. Else, the first process is allocated to the processor for the period of its burst time; remaining
processes are then rearranged in ascending order and moved to Ready Queue. While Ready queue is not empty, the
geometric mean (equation 1) of all processes with burst time greater than zero are computed iteratively during
execution cycle.

P
Gm = l_[ bt[i] )
i=1

If the outlier is less than Q3, TQ = (Gm + Q1/2) the processes in the ready queue is allocated to the CPU, if the
remaining time of the currently running process is less than half of the time quantum it is allow to complete its
execution (computing the Geometric mean iteratively till all bt<0). Else, if the outlier is greater than Q3, Geometric
mean is assigned to TQ, the processes in the ready queue is allocated to the CPU on TQ slot, if the remaining time
of the running process is less than half of the time quantum, the process is re-allocated to complete its execution.

NIRR CPU scheduling algorithm:

Step 1: Start
Step 2: Create a queue, ARRIVE, where processes will be placed as they arrive into the system
before they are moved to the ready queue
Step 3: Create a ready queue, REQUEST
Step 4: Do
Step 5: If (process Index =1) {
Time quantum=burst time [1]
Move the first process (pr[1]) to REQUEST queue}
else {
Move all processes in ARRIVE queue to REQUEST queue in ascending burst time order
Y, burst_timeli]

Time quantum = "

}

Step 6: Do

Step7: Allocate the CPU to the first process in REQUEST queue for a period of 1-time quantum.
Step 8: If the remaining CPU burst time of the currently running process is less than or equal to
half time quantum then, allocate the CPU again to the currently running process for remaining CPU burst time.
After completion of execution, remove the process from the ready queue and go to step 7.

Step 9: If the remaining CPU burst time of the currently running process is longer than half time
guantum, remove the process from the REQUEST queue and put it in the ARRIVE queue

and go to step 7.

Step 10: If a new process arrives the system, it is placed in the ARRIVE queue.

Step 11: WHILE queue REQUEST is not empty.

Step 12: WHILE queue ARRIVE is not empty.

Step13: Calculate AWT, ATAT, ART and NCS.

Step 14: END
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DABRR CPU scheduling algorithm:

TQ: Time Quantum

RQ: Ready Queue

n: number of process

Pi: Process at ith index

i, j: used as index of ready queue

TBT: Total Burst Time

[1] Arrange the processes in ascending order.
[2] n = number of processes in RQ

[3] =0, TBT=0

[4] Repeat step 5and 6 till i <n

[5] TBT += burst time of process Pi

[6] i++

[71TQ =TBT/n

[8]1j=0

[9] Repeat from step 12 to 19 till j<n

[10] if (burst time of Pi) <=TQ

[11] Execute the process

[12] Take the process out of RQ

[13] n--

[14] Else

[15] Execute the process for a time interval upto 1 TQ
[16] Burst time of Pi = Burst time of Pi — TQ
[17] Add the process to ready queue for next round of execution
[18] j++

[19] If new process arrives

[20] goto step 1
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[21] If RQ is not empty

[22] goto step 2

IRRVQ CPU scheduling algorithm:

Step 1: Make a ready queue RQUEUE of the Processes submitted for execution.

Step 2: DO steps 3 to 9 WHILE queue RQUEUE becomes empty.

Step 3: Arrange the processes in the ready queue REQUEST in the ascending order of their remaining burst time.
Step 4: Set the time quantum value equal to the burst time of first process in the ready queue RQUEUE.

Step 5: Pick the first process from the ready queue RQUEUE and allocate CPU to this process for a time interval
of up to 1-time quantum.

Step 6: Remove the currently running process from the ready queue RQUEUE, since it has finished execution and
the remaining burst time is zero.

Step 7: REPEAT steps 8 and 9 UNTIL all processes in the ready queue gets the CPU time interval up to 1-time
quantum.

Step 8: Pick the next process from the ready queue RQUEUE, and allocate CPU for a time interval of up to 1-time
quantum.

Step 9: IF the currently running process has finished execution and the remaining CPU burst time of the currently
running process is zero, remove it from the ready queue ELSE remove the currently running process from the
ready queue RQUEUE and put it at the tail of the ready queue.

RMRR CPU scheduling algorithm:

Step 1: Start

Step 2: Create two queues PREREADYQUEUE (PRQ) and READYQUEUE (RQ)

Step 3: new processes will put into PREREADYQUEUE

Step 4: while (PRQ is not empty)

Perform Round Robin with time quantum equals to two-unit time.

Move all processed process to RQ from PRQ.

Step 5: In READYQUEUE, apply following steps.

Step 6: TQ = mean of burst time of processes present in RQ.

Step 7: Allocate CPU to first process present in READYQUEUE.

Step 8: If the remaining CPU burst time of the currently running process is less than time

guantum then allocate the CPU again to the currently running process for remaining CPU burst time. After
completion of execution, remove the process from the ready queue and allocate CPU to next process.
Step 9: If the remaining CPU burst time of the currently running process is longer than time
guantum then allocate CPU to next process in READYQUEUE.

Step 10: If a new process arrives in the system during this time, put it into PREREADYQUEUE

and it will wait till current process get executed completely in READYQUEUE. Now go to step 4.
Step 11: WHILE READYQUEUE is not empty.

Step 12: Calculate AWT, ATAT, ART and NCS.

Step 13: END

EDRR CPU scheduling algorithm:

[1] BT max = Maximum Burst Time;
[2] BT; = Burst time of ith process
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[3] QT = Quantum Time;
[4] N = Number of processes in ready queue;
[5] remainingProcesses = Remaining processes;
[6]i=1;
[71 QT =0.8 * BT max
[8] while i < N do
[9] ifi<Nthen
[10] if Bi <= QT then

[11] assign CPU to the processes;

[12] N--

[13] else if Bi > QT then

[14] don’t assign CPU and put the processes at the end of the ready queue;
[15] remainingProcesses++;

[16] elseifi==N && remaining > 0 then

[17] QT =BT

[18] i==0;

[19] i++

[20] end

3.2 Evaluation Metrics

Definitions

Let TT; denote turnaround time of the j™ process.

Let CT; denote completion time of the j" process.

Let AT; denote arrival time of the j™ process.

Let WT; denote the waiting time of the j" process.

Let NCS represent number of context switching.

y represents the number of process in the set under consideration.

Bt[i] denotes the burst time of a given i" process in the queue.
Let w represent the number of times pre-emption takes place in the CPU.

TT; = CT; — AT; )
WT; = TT; — Bt[i] 3)
Hence, the Average Waiting Time (AWT) is:
1 Y
AWT = —Z wr; )
Y4
Jj=1
the Average Turnaround Time (ATT) is:
Y
1
ATT = —Z TT, (5)
=

The number of context switching is determined thus;
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Y
NCS = ) (w; —1) (6)
2

Equations (2) to (6) are incorporated into the algorithm in 3.1. The algorithm was implemented using C++
programming language and the values for the metrics are generated. The selected algorithms IRRVQ, DABRR,
RMRR, EDRR, NIRR were equally implemented in C++ with the values for the metrics generated for each
algorithm.

4. Results and Discussion
4.1 Experimental Settings

First, we divided the problems into two types based on arrival time of processes (processes with zero arrival time
and processes with non-zero arrival time). We further divided each into 3 more types based on the burst time of
processes (in ascending order, descending order, & random order). We analyzed all the algorithms based on six
situations. In each we have considered twenty processes with their arrival time and burst time.

4.1.1 Assumptions

During analysis we have considered CPU bound processes only. In each test case 20 processes were analyzed in
uni-processor environment. Corresponding burst time and arrival time of processes are known before execution.
The context switch time of processes has been considered as zero. The time required for sorting the processes in
ascending order also considered as zero.

Table 1: Process table (non-zero arrival)

Process 112 |3 |4 |5 |6 |7 |8 |9 1011|1213 |14|15|16 |17 |18 (19|20
ID

Burst 5177144 110|79|34|88|68 |72 |74|15|55|91(37|71|101|105|52 37|46
time

Arrival [0 |1 |2 |3 |4 |5 |6 |7 |8 9 101112 |13 (14|15 |16 |17 |18 19
time

The efficiency of each algorithm can be seen in the Gantt charts presented in Figure 1 to Figure 6.
IRRVQ:
51
P1|P1|P3|P4| P5|PE|PT|PB| P9|P1I]|P11|P11| P13|P14|P15 Plﬁ|P1'."|P13|
0 51 102 146 156 207 241 29T 343 394 445 460 511 56 599 6%0 701 Y5F 803

16
(P19 [P20 | P2[PS[P7T[PS| P?| P10 [P12 [ P13 [ P15| P16 | P17 [ P1§ | P5 [ PT |
303 840 886 912 938 964 981 1002 1025 1029 1055 1075 1101 1127 1128 1130 1132

1 9 3 10 4
[ P13 [ P16 | P17 | P7| P13 | P16 [ P17 | P13 [ P16 | P17 | P16 | P17 | P17
1132 1134 1136 11381147 1156 1165 1174 1177 1180 1133 11931203 1207
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Figure 1. Gantt chart representation of IRRVQ

NIRR:

51 6l
Pl [P4[P11 [P6 [P14 [P19 [ P3 [ P20 [P1S [P12 [ P8 [ PS | P15 [ P15 |

0 5 6 76 110 147 134 228 274 316 381 441 49 510 520

42
[P0 JPe [P [Pw]P2][P2]Ps [P5 [PT[PT[PI3[P13]Pl6 [ P17 | Pl6 [ P17 ]
530 581 592 653 666 727 743 304 822 333 010 971 1001 1062 1123 1163 1205

P17

1205 1207

Figure 2. Gantt chart representation of NIRR
DABRR:

51 il
Pl |[P4 [PI1] [P6 |P14 [P19 [P3 |PIS | P12 [P§ [P15 [P9 |Pl0 | P2 [P5 | P7 |
0 31 6 76 110 147 184 228 326 381 441 501 561 621 631 741 B0l

22
P13 | P16 | P17 | P§ | P15| P9 | P10 | P | P5| P7 | P13

301 861 921 981 939 1000 1012 1026 10431062 1034 1106

14 7 2
[P16 [ P17 | P7 P13 | P16 ] P17 | P1§ | P17 | P17

1106 1123 11301156 1165 1179 1193 1198 1205 1207

Figure 3. Gantt chart representation of DABRR algorithm
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RMRR:

2

P1|P1|P3|P4|P:|Pﬁ|P7|Ps|Pg|P1n|P11|P11|P13|P14|P1=|P15|
0 6 8 10 12 14 16 18 20 22 24 26 128 30 32

[P17 | P18 [ P19 [P20 [Pl [P) [P2|P3[P4[P5S[P5[P6|[PT[PT|PS[PS |
32 M 3 38 40 89 147 164 206 214 272 201 323 381 409 467 475

5
[Po P9 P10 [PIO [ P11 JPI2] P13 [ P13 [ P14 [ P15 [ P15 [ Pla | Pl6 [ F17 [ P17 |
475 533 545 603 617 630 633 T41 77} 807 865 876 934 975 1033 1078

[ P18 | P19 [ P20
1078 1128 1163 1207

Figure 4. Gantt chart representation of RMRR algorithm

EDRR:

84
Pl1[P2|P3|P4[P5|P6| PS| P9 [ P10 P11 [ P12 | P14 |
0 51 1218 171 181 1461 295 363 435 509 514 579 6la

105
[ P15 | P15 [ P19 | P20 | P7 | P13 | P16 | P17
616 687 739 776 822 910 1001[1102 1207

Figure 5. Gantt chart representation of EDRR algorithm
Proposed SIDRR:

51 75
Pl [ P4 [ P11 |P6 | P14 [ P10 [ P3| P20 [PI1S[ P12 | PS | P15
0 51 6 76 110 147 184 223 274 326 3Bl 449 M)

[P1s [ P18 P19 [ P20 [ PT[ P13 [ P16 [ F17
520 592 666 743 8212 910 1001 1102 1207

Figure 6. Gantt chart representation of SIDRR algorithm
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Table 2. Comparison table between proposed algorithm and existing algorithms reviewed

Existing algorithms and the proposed

Measuring parameters IRRVQ NIRR DABRR RMRR EDRR *SIDRR
Time quantum 51,26,2,9,3,10,4 51,61,42 51,60,22,14,7,2 2,58 84,105 51,75
No of context switches 46 30 36 49 19 19
Average waiting time 749.4 425.7 564.95 562.75 498.1 422.65
Average turnaround time 809.75 486.05 625.3 623.1 558.45 483

Table 2 presents the results of the execution of the settings in Table 1 on the algorithm developed by this study in
comparison to existing algorithms selected. It can be observed from Table 2 that only EDRR equals the
performance of *SIDRR as regards number of context switches.

Zero Arrival:

Given the same dataset as in Table 1, but with same arrival time; Table 3 represents the detail results of the
selected algorithms under study and the proposed.

Table 3. Comparative result of zero arrival with randomly ordered processes
Existing algorithms and the proposed

Measuring IRRVQ NIRR DABRR RMRR EDRR *SIDRR
parameter

Time 10,5,19,3,7,2,5,1,3,13,3,1,2,3,2,9,3,10,4 51,61,42 60,22,14,7,2 2,58 84,105 51,75
quantum

No of 193 30 36 49 19 19
context

switches

Average 793.55 435.2 567.75 612.4 507.6  432.15
waiting

time

Average 853.9 49555 628.1 672.75 567.95 4925
turnaround

time

Ascending order, Zero Arrival
Considering the same dataset earlier, but in ascending order in Table 4 with same arrival time;
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Table 4. Process table (ascending order)

rgoce831234567891011121314151617181920
Er‘:]rest 10|15 |34 |37 |37 |44 |46 |51 |52 |55|68|71|72|74| 77|79 |88 91101105
Arrival | 51 o o lololololololololololololololol o] o
time

The result of implemented algorithms is given in Table 5;

Table 5. Comparative result of zero arrival with ascending order processes

Existing algorithms and the proposed

Measuring IRRVQ NIRR DABRR RMRR EDRR *SIDRR
parameter

Time 10,5,19,3,7,2,5,1,3,13,3,1,2,3,2,9,3,10,4 10,63,40 60,22,14,7,2 2,58 84,105 10,80
guantum

No of 193 30 36 49 19 19
context

switches

Average 793.55 428.6 567.75 740.2 425.45 425.45
waiting

time

Average 853.9 488.95 628.1 800.55 485.8 485.8
turnaround

time

Table 6 presents the result of descending order without outlier, if the dataset is arranged in descending
order and non-zero.

Table 6. Comparative result of non-zero arrival with descending order processes

Existing algorithms and the proposed

Measuring IRRVQ NIRR DABRR RMRR EDRR *SIDRR
parameters

Time 10,5,19,3,7,2,5,1,3,13,3,1,2,3,2,9,3,10,4 105,58,35 60,22,14,7,2 2,58 84,105 105,73
guantum

No of 193 29 36 49 19 19
context

switches

Average 793.55 478.8 567.75 44445 577.6 4701
waiting

time

Average 853.9 539.15 628.1 504.8 637.95 530.45
turnaround

time
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The next scenario is the descending order without outlier, if the dataset is arranged in descending order according

to Table 7.

Descending order, zero arrival time

Table 7. Process in descending order and zero arrival time

réocessl234567891011121314151617181920
Burst
e | 105|101 01|88 |79 | 77|74 |72 | 71|68 |65 |52 |51 |46 | 44|37 |37 | 34|15 | 10
Arrival | 5 1 g ol ololololololololololololololololo
time

The result of descending order, zero arrival time and descending order non-zero arrival time are presented in
Tables 8 and 9 respectively.

Table 8. Comparative result of zero arrival with descending order processes

Existing algorithms and the proposed

Measuring IRRVQ NIRR DABRR RMRR EDRR *SIDRR
parameters
Time 10,5,19,3,7,2,5,1,3,13,3,1,2,3,2,9,3,10,4 105,58,35 60,22,14,7,2 2,58 84,105 105,73
quantum
No of 193 29 36 49 19 19
context
switches
Average 793.55 478.8 567.75 44445 577.6 470.1
waiting
time
Average 853.9 539.15 628.1 504.8 637.95 530.45
turnaround
time
Also, the result of the non-zero arrival is given in Table 9;

Table 9. Comparative result of non-zero arrival with descending order processes

Existing algorithms and the proposed

Measuring IRRVQ NIRR DABRR RMRR EDRR *SIDRR
parameters
Time 105 105,58,35 105,58,22,13,8 2,58 84,105 105,73
quantum
No of 19 29 32 49 19 19
context
switches
Average 711.7 469.3 568.3 730.7 568.1 460.6
waiting
time
Average 772.05 529.65 628.65 791.05 628.45 520.95
turnaround
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time

Comparative analysis

This section provides the comparative analysis of six algorithms on the basis of their resulted humber of context
switches, average waiting time, and average turnaround time. Tables 10 - 12 shows the performance analysis of six
algorithms by summarizing the number of context switches, average waiting time, and average turnaround time

resulted from case | (Zero arrival) and Il (Non-zero arrival).

It can be observed in Table 10 that for IRRQ, NIRR, DABRR, and RMRR the number of preemptions is higher
when compared to the proposed algorithm SIDRR. This is because the time quantum is either determined by
arithmetic mean of burst times or Shortest Job First. EDRR’s time quantum is dynamically determined based on
burst time of processes. The high time quantum also impacted the average waiting time and average turnaround

time as can be observed in Tables 11 and 12.

Table 10. Number of context switches

ZERO ARRIVAL

Ascending Descending Random Total

NON-ZERO ARRIVAL
Ascending Descending Random Total

IRRVQ 193
DABRR 36
RMRR 49
EDRR 19
NIRR 30
*SIDRR 19

193
36
49
19
29
19

193
36
49
19
30
19

579
108
147
57
89
57

193
36
49
19
30
19

19
32
49
19
29
19

46
36
49
19
30
19

258
104
147
57
89
57

Table 11. Average waiting time

ZERO ARRIVAL

Ascending Descending

Random Total

NON-ZERO ARRIVAL

Ascending Descending

Random Total

IRRVQ 793.55
DABRR 567.75
RMRR  444.45

EDRR  577.6
NIRR 478.8
*SIDRR 470.1

793.55
567.75
740.2
425.45
428.6
425.45

793.55
567.75
612.4
507.6
435.2
432.15

2380.65
1342.6
1703.25
1797.05
1510.65
1327.7

784.05
564.1
434.95
145.95
419.1
145.95

711.7
568.3
730.7
568.1
469.3
460.6

749.4
564.95
562.75
498.1
425.7
422.65

224515
1697.35
1728.4
1212.15
1314.1
1029.2

Table 12. Average turnaround time

ZERO ARRIVAL
Ascending Descending Random

NON-ZERO ARRIVAL

Total Ascending Descending Random Total

IRRVQ 853.9
DABRR 628.1
RMRR  800.55
EDRR 48538
NIRR 488.95
*SIDRR  485.8

853.9
628.1
504.8
637.95
539.1
530.45

853.9
628.1
672.75
567.95
495.55
492.5

2561.7 844.4
1884.3  624.45
1978.1 495.3
1691.7 476.3

1523.65 479.45
1508.75 476.3

772.05
628.65
791.05
628.45
529.65
520.95

809.75
625.3
623.1
558.45
486.05
483

2426.2
1878.4
1909.45
1663.2
1495.15
1480.25

The corresponding charts for the comparison tables is given below,
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Tables 10 — 12 show that SIDRR, the algorithm developed by this study performed better than the other five
algorithms implemented on same processes with zero and non-zero arrival time. It can also be observed that only
EDRR has an equal performance in terms of number of context switches.

Considering the IRRVQ as the baseline improvement over the conventional RR, the result analysis affirms SIDRR
developed by this study is an improvement over some of the algorithms in literature.

Figures 7 and 8 depicts the percentage of average waiting time saved by each algorithm than Improved Round
Robin Varying time Quantum algorithm. Proposed algorithm SIDRR saves 49.05% waiting time as compared with
IRRVQ, DABRR, RMRR, EDRR and NIRR.

60.00%

50.00%

40.00%

30.00%

20.00%

10.00%

0.00%
IRRVQ DABRR RMRR EDRR NIRR SIDRR

Figure 7. Graph showing percentage reduction in average waiting time by each algorithm
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45.00%

40.00%
35.00%
30.00%
25.00%
20.00%
15.00%
10.00%

5.00%

0.00%
IRRVQ DABRR RMRR EDRR NIRR SIDRR

Figure 8. Graph showing percentage reduction in average turnaround time by each algorithm

Conclusions

This study focused at developing an improved dynamic RR algorithm that is not dependent on arithmetic mean in
determining its time quantum such that when an outlier is detected within the burst time of processes the TQ is
dynamically determined. The study selected and studied five existing improvements on Round Robin Scheduling
algorithms. The algorithms are; New Improved Round Robin (NIRR), Dynamic Average Burst Round Robin
(DABRR), Improved Round Robin with Varying time Quantum (IRRVQ), Revamped Mean Round Robin
(RMRR) and Efficient Dynamic Round Robin (EDRR). A new algorithm was also developed based on the
Numeric Outlier Detection technique and geometric mean for dynamic time quantum determination. The five
selected algorithms and the proposed algorithm were implemented in C++ programming language. The algorithms
were evaluated based on average waiting time, average turnaround time, and number of context switching. The
results presented in this paper demonstrated improved performance in comparison to NIRR, DABRR, IRRVQ,
RMRR and EDRR in terms of average waiting time and average turnaround time. The performance in terms of
number of context switches is the same for only EDRR and the proposed algorithm. This study therefore,
recommends the adoption of SIDRR for CPU scheduling and other emerging areas such as cloud computing
resource allocation.
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