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Abstract  

 

Background: This paper proposed a Simplified Improved Dynamic Round Robin (SIDRR) algorithm that further 

improved on some existing Improvements on Round Robin CPU scheduling algorithms; Most of these 

improvements on Round Robin rely on arithmetic mean in selecting their Time Quantum (TQ). The arithmetic 

mean approach does not adequately represent the data.  Aim: the aim of this study is to develop a simplified 

dynamic improved Round Robin CPU scheduling algorithm. Method: this study implemented five existing Round 

Robin scheduling algorithm using C++. The algorithms are; New Improved Round Robin (NIRR), Dynamic 

Average Burst Round Robin (DABRR), Improved Round Robin with Varying time Quantum (IRRVQ), Revamped 

Mean Round Robin (RMRR) and Efficient Dynamic Round Robin (EDRR). A new algorithm was also developed 

based on the Numeric Outlier Detection technique and geometric mean for dynamic time quantum determination. 

The proposed algorithm was compared with the five implemented using parameters such as average turnaround 

time, average waiting time and number of context switching. Results: the result of this study showed that the 

proposed algorithm performs better than the other five algorithms in terms of Average waiting time, average 

turnaround time & number of context switches. This study therefore, recommends the adoption of SIDRR for CPU 

scheduling and other emerging areas such as cloud computing resource allocation.  

 

Keywords: CPU scheduling, SIDRR algorithm, Average Turnaround Time, Average Waiting Time, Context 

Switching 

 

 

1. Introduction  

 

Central Processing Unit (CPU) Scheduling is a precise procedural set-plan of selecting which process gets access 

to the CPU for execution and once the current process leaves, what sequence others should follow to get the CPU. 

The basic idea is to keep the CPU busy as much as possible by executing a user process until it must wait for an 

event, and then switch to another process. Scheduling is an important practical problem in industry that is hard to 

tackle using traditional optimization methods, due to conflicting requirements, interrelated constraints, and high 

computational complexity (Gen & Cheng, 2000).  Pati, Korde, and Dey, (2017) asserts that RR scheduling 

algorithm (one of the fundamental scheduling algorithms) is one of the most widely used CPU scheduling 

algorithms which are implemented in various software systems; used in various operating systems, such as 

Windows, Linux and so on. The LINUX operating system’s heartbeat, which is the Kernel, is the engine room 

responsible for controlling the computer’s resources and scheduling of users’ jobs so that each one gets its fair 

share of system resources, including access to the CPU as well as the peripheral devices like disk and CD-ROM 

storage, printers and tape drives (Sobell, 1999). Adekunle, Ogunwobi, Jerry, Efuwape, Ebiesuwa, and Ainam 

(2014) in their study “A comparative study of scheduling algorithm for multiprogramming in real time system” 

indicates that there is actually no scheduling algorithm satisfying the condition of an ideal algorithm and concluded 

that further studies which improve current scheduling algorithms need to be done. This is validated in the study of 

Harshita, Subrata, and Ramya, (2017) that asserts that different CPU scheduling algorithms have peculiar 

properties favoring a particular class of processes over another. This paper proposes a new algorithm (SIDRR) that 
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further improved on some existing Improvements on Round Robin CPU scheduling algorithms; Most of these 

improvements on RR rely on arithmetic mean in selecting their Time Quantum (TQ). The arithmetic mean 

approach does not adequately represent the data.  In this paper existing improvements on Round Robin scheduling 

algorithm proposed by the studies of Abdulrazaq, Saleh, & Junaidu, (2014) NIRR
1
, Manish & Rashid, (2014) 

IRRVQ
2
, Dash, Sahu, & Samantra, (2015) DABRR

3
, Kathuria, Singh, Tiwar, & Prashant, (2016) RMRR

4
, and 

Farooq, Shakoor, & Siddique, (2017) EDRR
5
, were implemented in order to validate the results presented in each 

study and to ensure efficient comparative study of these algorithms with the (SIDRR) developed by this study.  

  

 

2. Related Works 

 

The core part of operating system just like any system, is scheduling. Some commonly used scheduling algorithms 

are: First in First Out (FIFO); Shortest Job First (SJF) without preemption; Preemptive SJF; Priority based without 

preemption; Preemptive Priority base; Round robin; Multilevel Feedback Queue. 

The order in which a process is allocated and its duration is also determined by the algorithm (Jayavarthini, 

Chattopadhyay, Banerjee, & Dutta, 2017). Round Robin is particularly designed for time-sharing systems; each 

process has a small unit of CPU time (time quantum). This algorithm allows a process in the ready queue to run 

until its time quantum finishes, and then executes the next process in the ready queue. It is similar to First Come 

First Serve (FCFS) scheduling, but preemption is added to switch between processes. The ready queue is 

maintained as a circular queue. The CPU scheduler goes around the ready queue, allocating the CPU to each 

process for a time interval of up to 1-time quantum. To implement the Round Robin scheduling, we keep the ready 

queue as a First-In-First-Out (FIFO) queue of processes. New processes are added to the tail of the ready queue. 

The CPU scheduler picks the first process from the ready queue, sets a timer to interrupt after 1-time quantum, and 

dispatches the process ((Silberschatz, Gagne, & Galvin, 2009); (Mohammed, 2011); (Abdulrazaq, Salisu, Ahmad, 

& Saleh, 2014); (Kathuria, Singh, Tiwar, & Prashant, 2016)). Comparative analysis of some improved Round 

Robin Scheduling by Musa, Lasisi, and Gokir (2017) asserts that not all improvements are better than earlier 

works. The study confirmed DABRR algorithm (Dash, Sahu, & Samantra, 2015) as better than DTSRR algorithm 

(Muraleedharan, Antony, & Nandakumar, 2016) and RMRR algorithm (Kathuria, Singh, Tiwar, & Prashant, 2016) 

proposed later. In recent time different approaches have been used to increase the performance of CPU scheduling 

algorithms. 

 

Manish and Rashid, (2014) Combines the Shortest Job First with conventional RR. The processes are sorted in 

ascending order. At every cycle, the shortest burst time is implemented as the time quantum.  

Abdulrazaq, Saleh, and Junaidu, (2014) Combines First Come First Serve (FCFS) with SJN and conventional RR. 

TQ was computed using arithmetic mean.  

Dash, Sahu, and Samantra, (2015) introduces Iterative computation of TQ using arithmetic mean at every CPU 

cycle. Similarly, Kathuria, Singh, Tiwar, and Prashant, (2016) utilizes arithmetic mean in computing the time 

quantum. The algorithm first assigns all burst times for TQ=2 while processes arrives in the Pre-ready queue. 

Remaining burst times are moved to ready queue and the mean is compute as TQ at every CPU cycle. the TQ is 

computed for remaining burst times. Any running process with remainder less than the TQ is reassigned to 

complete execution.  

 

                                                           
1
 New Improved Round Robin 

2
 Improved Round Robin with Varying time Quantum 

3
 Dynamic Average Burst Round Robin 

4
 Revamped Mean Round Robin 

5
 Efficient Dynamic Round Robin  
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The study by Singh and Dalal (2016) proposed an Improved Dynamic Round Robin (IDRR) for process 

scheduling. The time quantum was computed as  

          (√(        (              ))  (          (              )))         (   ) 

The study give concession to SJF. Its TQ relies on both the arithmetic mean and median of the processes. 

 

Farooq, Shakoor, and Siddique, (2017) also gives concession to Shortest Job First (SJF) by benchmarking the TQ 

and attempts to selectively run through processes to first execute the smaller tasks before returning CPU to the 

remaining larger burst times execution. 

 

Neha and Jiyani (2018) in their study implemented a First Come First Serve (FCFS) with the conventional RR like 

Abdulrasaq et al. However, the mode of determining the time quantum was not clearly presented. 

 

Zaidi and Shukla (2018) proposed a round robin with a variable quantum time in cloud computing environment. 

There work aimed at improving the machine efficiency and reducing the waiting time, turnaround time, context 

switches, response time and overall improving the machine performances. All the cloudlets are arranged in 

decreasing order of their burst time. The time quantum is derived by finding the square root of the product of the 

median and the highest burst time of the cloudlets. The method also adopts the normal round robin approaches in 

which the cloudlets are switched whenever they are unable to finish their task before the quantum time lapse. The 

result of the experiment was benchmarked with round robin algorithm considering only two metrics waiting time 

and turnaround time. The work performed better than the traditional round robin algorithm. 

 

This study (Kumar, Kumar, Jain & Jain, 2018) presented an algorithm that uses round robin and shortest job first in 

order to reduce the turnaround time and waiting time. In their work, a fixed quantum time was used for all the 

processes. Whenever any process is unable to finish it task before the quantum time lapse, the process is placed 

back on the ready queue and the next process with shortest burst time takes up the CPU but if the process finishes 

it task before the quantum time lapse, the CPU can then take up another process with the shortest burst time for 

execution. The work was benchmarked with round robin, short job first using turnaround time, waiting time and 

context switches. The proposed algorithm performs better than round robin, shortest job first using the metrics 

aforementioned. 

 

Fataniya and Patel (2018) presented another approach for scheduling algorithm of round robin using dynamic 

quantum time in cloud environment. In their methodology, the quantum time was obtained by taking the mean and 

median of all the burst time of the processes. The mean is considered by taking the average of all the burst time 

while the median was considered if the result was odd, them the middle number will be the median otherwise, if 

the result is even, then the median will be the mean of two central number. It can be observed from the review 

above that most of the methodologies adopted relied on arithmetic mean or shortest job first for time quantum 

determination. The obvious challenge with arithmetic mean is that the time quantum will always tend towards the 

mean if there is an outlying burst time. Also, shortest job first will lead to starvation for jobs with higher burst 

time. 

 

 

3. Methodology 

3.1 The proposed SIDRR Algorithm 

//Gm:  Geometric mean 

//TQ:   Time Quantum 

//RQ:   Ready Queue 
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//bt []:   array of process’ burst time 

//bt: bt = | bt [] | 

//n:      number of process 

//Pi:     Process at ith index 

//i, j:    used as index on Queues 

//Total: Total Burst Time 

//Numeric outlier calculations: Median, 1
st
 Quartile Q1 

// 3
rd

 Quartile Q3, Inter Quartile Range IQR  

//IQR=Q3-Q1 

//Inner fences: upper=Q3 + (IQR*1.5), lower=Q1 - (IQR*1.5) 

[1] Start 

[2] input n
th
 number of processes 

[3] Total=1 

[4] make a copy of RQ  

[5] Arrange the processes in ascending order 

[6] compute Numeric outlier parameters //Median, Q1, Q3, IQR, lower inner fences 

[7]  check for outlier in the Processes 

[8] if (outlier > Q3) { 

[9] Assign Q3 to TQ 

[10]     Allocate CPU to run time slice through the processes till n=0 

[11] } else { 

[12] If (n=1) { 

[13] Arrange processes bt [] in ascending order 

[14] end if 

[15] }} 

[16] end if 

[17] move all process with bt>0 to RQ 

[18] if (RQ=Null) { 

[19] Compute AWT, ATAT, NCS 

[20] DISPLAY RESULT  

[21] TERMINATE  

[22] } else { 

[23] If (outlier>Q3) { 

[24] Repeat step and till i=n 

[25] Total*=burst time of process Pi provided bt[i]>0 

[26] Compute TQ =∏    
    

[27] } else { 

[28] Compute TQ=∏    
       

[29]      } 

[30] Allocate CPU 

[31] If (bt<TQ/2||bt<TQ) { 

[32] Re-allocate CPU 

[33] If (RQ! = Null) { 

[34] Repeat step 30 while n > 0 

[35] i++; 

[36] n--;  

[37]      }} 
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Processes are collected in the Ready Queue. A copy of the Ready Queue is made (solely for data set verification 

and computation of Numeric outlier parameters), sorted in ascending order, and the median, first Quartile, third 

Quartile as well as the Inter Quartile Range are computed. This is used to generate the Inner fences that verify the 

processes burst times that possibly skewed the data set. If there exist any outlier candidate in the data set and its 

value is greater than Q3, the time quantum is set to the 3
rd

 Quartile and all the processes are allotted to the 

processor for the period of time quantum; subsequent burst time of processes greater than zero are moved to the 

Ready queue. Else, the first process is allocated to the processor for the period of its burst time; remaining 

processes are then rearranged in ascending order and moved to Ready Queue. While Ready queue is not empty, the 

geometric mean (equation 1) of all processes with burst time greater than zero are computed iteratively during 

execution cycle. 

                                                                          ∏     

  

   

                                           ( )  

If the outlier is less than Q3,    (        )  the processes in the ready queue is allocated to the CPU, if the 

remaining time of the currently running process is less than half of the time quantum it is allow to complete its 

execution (computing the Geometric mean iteratively till all bt<0). Else, if the outlier is greater than Q3, Geometric 

mean is assigned to TQ, the processes in the ready queue is allocated to the CPU on TQ slot, if the remaining time 

of the running process is less than half of the time quantum, the process is re-allocated to complete its execution. 

NIRR CPU scheduling algorithm: 

Step 1: Start 

Step 2: Create a queue, ARRIVE, where processes will be placed as they arrive into the system  

before they are moved to the ready queue 

Step 3: Create a ready queue, REQUEST 

Step 4: Do 

Step 5: If (process Index =1) { 

  Time quantum=burst time [1] 

Move the first process (pr[1]) to REQUEST queue} 

else { 

Move all processes in ARRIVE queue to REQUEST queue in ascending burst time order 

Time quantum =  
∑               

   

 
 

} 

Step 6: Do 

Step7: Allocate the CPU to the first process in REQUEST queue for a period of 1-time quantum. 

Step 8: If the remaining CPU burst time of the currently running process is less than or equal to  

half time quantum then, allocate the CPU again to the currently running process for remaining CPU burst time. 

After completion of execution, remove the process from the ready queue and go to step 7. 

Step 9: If the remaining CPU burst time of the currently running process is longer than half time  

quantum, remove the process from the REQUEST queue and put it in the ARRIVE queue  

and go to step 7. 

Step 10: If a new process arrives the system, it is placed in the ARRIVE queue. 

Step 11: WHILE queue REQUEST is not empty. 

Step 12: WHILE queue ARRIVE is not empty. 

Step13: Calculate AWT, ATAT, ART and NCS. 

Step 14: END 
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DABRR CPU scheduling algorithm: 

TQ: Time Quantum 

RQ: Ready Queue 

n: number of process 

Pi: Process at ith index 

i, j: used as index of ready queue 

TBT: Total Burst Time 

[1] Arrange the processes in ascending order. 

[2] n = number of processes in RQ 

[3] i=0, TBT=0 

[4] Repeat step 5 and 6 till i < n 

[5] TBT += burst time of process Pi 

[6] i++ 

[7] TQ = TBT/n 

[8] j = 0 

[9] Repeat from step 12 to 19 till j<n 

[10] if (burst time of Pi) <= TQ 

[11] Execute the process 

[12] Take the process out of RQ 

[13] n-- 

[14] Else 

[15] Execute the process for a time interval up to 1 TQ 

[16] Burst time of Pi = Burst time of Pi – TQ 

[17] Add the process to ready queue for next round of execution 

[18] j++ 

[19] If new process arrives 

[20] goto step 1 
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[21] If RQ is not empty 

[22] goto step 2 

 

IRRVQ CPU scheduling algorithm: 

Step 1: Make a ready queue RQUEUE of the Processes submitted for execution. 

Step 2: DO steps 3 to 9 WHILE queue RQUEUE becomes empty. 

Step 3: Arrange the processes in the ready queue REQUEST in the ascending order of their remaining burst time. 

Step 4: Set the time quantum value equal to the burst time of first process in the ready queue RQUEUE. 

Step 5: Pick the first process from the ready queue RQUEUE and allocate CPU to this process for a time interval 

of up to 1-time quantum. 

Step 6: Remove the currently running process from the ready queue RQUEUE, since it has finished execution and 

the remaining burst time is zero. 

Step 7: REPEAT steps 8 and 9 UNTIL all processes in the ready queue gets the CPU time interval up to 1-time 

quantum. 

Step 8: Pick the next process from the ready queue RQUEUE, and allocate CPU for a time interval of up to 1-time 

quantum. 

Step 9: IF the currently running process has finished execution and the remaining CPU burst time of the currently 

running process is zero, remove it from the ready queue ELSE remove the currently running process from the 

ready queue RQUEUE and put it at the tail of the ready queue. 

RMRR CPU scheduling algorithm: 

Step 1: Start 

Step 2: Create two queues PREREADYQUEUE (PRQ) and READYQUEUE (RQ) 

Step 3: new processes will put into PREREADYQUEUE 

Step 4: while (PRQ is not empty) 

Perform Round Robin with time quantum equals to two-unit time. 

Move all processed process to RQ from PRQ. 

Step 5: In READYQUEUE, apply following steps. 

Step 6: TQ = mean of burst time of processes present in RQ. 

Step 7: Allocate CPU to first process present in READYQUEUE. 

Step 8: If the remaining CPU burst time of the currently running process is less than time  

quantum then allocate the CPU again to the currently running process for remaining CPU burst time. After 

completion of execution, remove the process from the ready queue and allocate CPU to next process. 

Step 9: If the remaining CPU burst time of the currently running process is longer than time  

quantum then allocate CPU to next process in READYQUEUE. 

Step 10: If a new process arrives in the system during this time, put it into PREREADYQUEUE  

and it will wait till current process get executed completely in READYQUEUE. Now go to step 4. 

Step 11: WHILE READYQUEUE is not empty. 

Step 12: Calculate AWT, ATAT, ART and NCS. 

Step 13: END 

 

EDRR CPU scheduling algorithm: 

[1] BTmax = Maximum Burst Time; 

[2] BTi = Burst time of ith process 
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[3] QT = Quantum Time; 

[4] N = Number of processes in ready queue; 

[5] remainingProcesses = Remaining processes; 

[6] i = 1; 

[7] QT = 0.8 * BTmax 

[8] while i < N do 

[9]    if i < N then 

[10]          if Bi <= QT then  

[11]              assign CPU to the processes; 

[12]              N - -; 

[13]           else if Bi > QT then 

[14]              don’t assign CPU and put the processes at the end of the ready queue; 

[15]              remainingProcesses++; 

[16]    else if i == N && remaining > 0 then 

[17]            QT = BTmax; 

[18]                    i == 0; 

[19]     i ++; 

[20] end  

3.2 Evaluation Metrics 

Definitions 

Let     denote turnaround time of the j
th
 process. 

Let     denote completion time of the j
th
 process. 

Let     denote arrival time of the j
th
 process. 

Let     denote the waiting time of the j
th
 process. 

Let     represent number of context switching. 

  represents the number of process in the set under consideration.  

      denotes the burst time of a given i
th
 process in the queue. 

Let   represent the number of times pre-emption takes place in the CPU. 
                                                                                                                                        ( ) 

                                                  

                                                                                                                                       ( ) 

Hence, the Average Waiting Time (AWT) is: 

                                                                               
 

 
∑   

 

   

                                               ( ) 

the Average Turnaround Time (ATT) is: 

                                                                                   
 

 
∑   

 

   

                                               ( ) 

The number of context switching is determined thus;  
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                                                                            ∑(    )

 

   

                                                ( ) 

 

Equations (2) to (6) are incorporated into the algorithm in 3.1. The algorithm was implemented using C++ 

programming language and the values for the metrics are generated. The selected algorithms IRRVQ, DABRR, 

RMRR, EDRR, NIRR were equally implemented in C++ with the values for the metrics generated for each 

algorithm. 

4. Results and Discussion 

4.1 Experimental Settings 

First, we divided the problems into two types based on arrival time of processes (processes with zero arrival time 

and processes with non-zero arrival time). We further divided each into 3 more types based on the burst time of 

processes (in ascending order, descending order, & random order). We analyzed all the algorithms based on six 

situations. In each we have considered twenty processes with their arrival time and burst time. 

4.1.1 Assumptions 

During analysis we have considered CPU bound processes only. In each test case 20 processes were analyzed in 

uni-processor environment. Corresponding burst time and arrival time of processes are known before execution. 

The context switch time of processes has been considered as zero. The time required for sorting the processes in 

ascending order also considered as zero. 

Table 1: Process table (non-zero arrival) 

Process 

ID 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

Burst 

time 

51 77 44 10 79 34 88 68 72 74 15 55 91 37 71 101 105 52 37 46 

Arrival 

time 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

The efficiency of each algorithm can be seen in the Gantt charts presented in Figure 1 to Figure 6. 

IRRVQ: 
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Figure 1. Gantt chart representation of IRRVQ 

NIRR:  

 

Figure 2. Gantt chart representation of NIRR 

DABRR: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Gantt chart representation of DABRR algorithm 
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RMRR: 

 

Figure 4. Gantt chart representation of RMRR algorithm 

 

EDRR: 

 

 

Figure 5. Gantt chart representation of EDRR algorithm 

Proposed SIDRR: 

 

Figure 6. Gantt chart representation of SIDRR algorithm 
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Table 2. Comparison table between proposed algorithm and existing algorithms reviewed 

 Existing algorithms and the proposed  

Measuring parameters IRRVQ NIRR DABRR RMRR EDRR *SIDRR 

Time quantum 51,26,2,9,3,10,4 51,61,42 51,60,22,14,7,2 2,58 84,105 51,75 

No of context switches 46 30 36 49 19 19 

Average waiting time 749.4 425.7 564.95 562.75 498.1 422.65 

Average turnaround time 809.75 486.05 625.3 623.1 558.45 483 

 

Table 2 presents the results of the execution of the settings in Table 1 on the algorithm developed by this study in 

comparison to existing algorithms selected. It can be observed from Table 2 that only EDRR equals the 

performance of *SIDRR as regards number of context switches. 

  

Zero Arrival: 

Given the same dataset as in Table 1, but with same arrival time; Table 3 represents the detail results of the 

selected algorithms under study and the proposed. 

Table 3. Comparative result of zero arrival with randomly ordered processes 

 Existing algorithms and the proposed  

Measuring 

parameter 

IRRVQ NIRR DABRR RMRR EDRR *SIDRR 

Time 

quantum 

10,5,19,3,7,2,5,1,3,13,3,1,2,3,2,9,3,10,4 51,61,42 60,22,14,7,2 2,58 84,105 51,75 

No of 

context 

switches 

193 30 36 49 19 19 

Average 

waiting 

time 

793.55 435.2 567.75 612.4 507.6 432.15 

Average 

turnaround 

time 

853.9 495.55 628.1 672.75 567.95 492.5 

 

Ascending order, Zero Arrival  

Considering the same dataset earlier, but in ascending order in Table 4 with same arrival time; 
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Table 4. Process table (ascending order) 

Process 

ID 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

Burst 

time 
10 15 34 37 37 44 46 51 52 55 68 71 72 74 77 79 88 91 101 105 

Arrival 

time 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 

The result of implemented algorithms is given in Table 5;  

Table 5. Comparative result of zero arrival with ascending order processes 

 Existing algorithms and the proposed 

Measuring 

parameter 

IRRVQ NIRR DABRR RMRR EDRR *SIDRR 

Time 

quantum 

10,5,19,3,7,2,5,1,3,13,3,1,2,3,2,9,3,10,4 10,63,40 60,22,14,7,2 2,58 84,105 10,80 

No of 

context 

switches 

193 30 36 49 19 19 

Average 

waiting 

time 

793.55 428.6 567.75 740.2 425.45 425.45 

Average 

turnaround 

time 

853.9 488.95 628.1 800.55 485.8 485.8 

 

Table 6 presents the result of descending order without outlier, if the dataset is arranged in descending 

order and non-zero. 

Table 6. Comparative result of non-zero arrival with descending order processes 

 Existing algorithms and the proposed  

Measuring 

parameters 

IRRVQ NIRR DABRR RMRR EDRR *SIDRR 

Time 

quantum 

10,5,19,3,7,2,5,1,3,13,3,1,2,3,2,9,3,10,4 105,58,35 60,22,14,7,2 2,58 84,105 105,73 

No of 

context 

switches 

193 29 36 49 19 19 

Average 

waiting 

time 

793.55 478.8 567.75 444.45 577.6 470.1 

Average 

turnaround 

time 

853.9 539.15 628.1 504.8 637.95 530.45 
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The next scenario is the descending order without outlier, if the dataset is arranged in descending order according 

to Table 7. 

Descending order, zero arrival time 

 

Table 7. Process in descending order and zero arrival time 

Process 

ID 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

Burst 

time 
105 101 91 88 79 77 74 72 71 68 55 52 51 46 44 37 37 34 15 10 

Arrival 

time 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

The result of descending order, zero arrival time and descending order non-zero arrival time are presented in 

Tables 8 and 9 respectively. 

Table 8. Comparative result of zero arrival with descending order processes 

 Existing algorithms and the proposed  

Measuring 

parameters 

IRRVQ NIRR DABRR RMRR EDRR *SIDRR 

Time 

quantum 

10,5,19,3,7,2,5,1,3,13,3,1,2,3,2,9,3,10,4 105,58,35 60,22,14,7,2 2,58 84,105 105,73 

No of 

context 

switches 

193 29 36 49 19 19 

Average 

waiting 

time 

793.55 478.8 567.75 444.45 577.6 470.1 

Average 

turnaround 

time 

853.9 539.15 628.1 504.8 637.95 530.45 

 

Also, the result of the non-zero arrival is given in Table 9; 

Table 9. Comparative result of non-zero arrival with descending order processes 

 Existing algorithms and the proposed  

Measuring 

parameters 

IRRVQ NIRR DABRR RMRR EDRR *SIDRR 

Time 

quantum 

105 105,58,35 105,58,22,13,8 2,58 84,105 105,73 

No of 

context 

switches 

19 29 32 49 19 19 

Average 

waiting 

time 

711.7 469.3 568.3 730.7 568.1 460.6 

Average 

turnaround 

772.05 529.65 628.65 791.05 628.45 520.95 
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time 

 

 

Comparative analysis  

This section provides the comparative analysis of six algorithms on the basis of their resulted number of context 

switches, average waiting time, and average turnaround time. Tables 10 - 12 shows the performance analysis of six 

algorithms by summarizing the number of context switches, average waiting time, and average turnaround time 

resulted from case I (Zero arrival) and II (Non-zero arrival). 

It can be observed in Table 10 that for IRRQ, NIRR, DABRR, and RMRR the number of preemptions is higher 

when compared to the proposed algorithm SIDRR. This is because the time quantum is either determined by 

arithmetic mean of burst times or Shortest Job First. EDRR’s time quantum is dynamically determined based on 

burst time of processes. The high time quantum also impacted the average waiting time and average turnaround 

time as can be observed in Tables 11 and 12.  

Table 10. Number of context switches 

 ZERO ARRIVAL NON-ZERO ARRIVAL 

 Ascending Descending Random Total Ascending Descending Random Total 

IRRVQ 193 193 193 579 193 19 46 258 

DABRR 36 36 36 108 36 32 36 104 

RMRR 49 49 49 147 49 49 49 147 

EDRR 19 19 19 57 19 19 19 57 

NIRR 30 29 30 89 30 29 30 89 

*SIDRR 19 19 19 57 19 19 19 57 

   

Table 11. Average waiting time 

 ZERO ARRIVAL NON-ZERO ARRIVAL 

 Ascending Descending Random Total Ascending Descending Random Total 

IRRVQ 793.55 793.55 793.55 2380.65 784.05 711.7 749.4 2245.15 

DABRR 567.75 567.75 567.75 1342.6 564.1 568.3 564.95 1697.35 

RMRR 444.45 740.2 612.4 1703.25 434.95 730.7 562.75 1728.4 

EDRR 577.6 425.45 507.6 1797.05 145.95 568.1 498.1 1212.15 

NIRR 478.8 428.6 435.2 1510.65 419.1 469.3 425.7 1314.1 

*SIDRR 470.1 425.45 432.15 1327.7 145.95 460.6 422.65 1029.2 

 

Table 12. Average turnaround time 

 ZERO ARRIVAL NON-ZERO ARRIVAL 

 Ascending Descending Random Total Ascending Descending Random Total 

IRRVQ 853.9 853.9 853.9 2561.7 844.4 772.05 809.75 2426.2 

DABRR 628.1 628.1 628.1 1884.3 624.45 628.65 625.3 1878.4 

RMRR 800.55 504.8 672.75 1978.1 495.3 791.05 623.1 1909.45 

EDRR 485.8 637.95 567.95 1691.7 476.3 628.45 558.45 1663.2 

NIRR 488.95 539.1 495.55 1523.65 479.45 529.65 486.05 1495.15 

*SIDRR 485.8 530.45 492.5 1508.75 476.3 520.95 483 1480.25 

The corresponding charts for the comparison tables is given below,    
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Tables 10 – 12 show that SIDRR, the algorithm developed by this study performed better than the other five 

algorithms implemented on same processes with zero and non-zero arrival time. It can also be observed that only 

EDRR has an equal performance in terms of number of context switches. 

Considering the IRRVQ as the baseline improvement over the conventional RR, the result analysis affirms SIDRR 

developed by this study is an improvement over some of the algorithms in literature. 

Figures 7 and 8 depicts the percentage of average waiting time saved by each algorithm than Improved Round 

Robin Varying time Quantum algorithm. Proposed algorithm SIDRR saves 49.05% waiting time as compared with 

IRRVQ, DABRR, RMRR, EDRR and NIRR. 

 

 

Figure 7. Graph showing percentage reduction in average waiting time by each algorithm 
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Figure 8. Graph showing percentage reduction in average turnaround time by each algorithm 

 

Conclusions  

This study focused at developing an improved dynamic RR algorithm that is not dependent on arithmetic mean in 

determining its time quantum such that when an outlier is detected within the burst time of processes the TQ is 

dynamically determined. The study selected and studied five existing improvements on Round Robin Scheduling 

algorithms. The algorithms are; New Improved Round Robin (NIRR), Dynamic Average Burst Round Robin 

(DABRR), Improved Round Robin with Varying time Quantum (IRRVQ), Revamped Mean Round Robin 

(RMRR) and Efficient Dynamic Round Robin (EDRR). A new algorithm was also developed based on the 

Numeric Outlier Detection technique and geometric mean for dynamic time quantum determination. The five 

selected algorithms and the proposed algorithm were implemented in C++ programming language. The algorithms 

were evaluated based on average waiting time, average turnaround time, and number of context switching. The 

results presented in this paper demonstrated improved performance in comparison to NIRR, DABRR, IRRVQ, 

RMRR and EDRR in terms of average waiting time and average turnaround time. The performance in terms of 

number of context switches is the same for only EDRR and the proposed algorithm. This study therefore, 

recommends the adoption of SIDRR for CPU scheduling and other emerging areas such as cloud computing 

resource allocation. 
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