
Abstract

Round Robin (RR) algorithm has been regarded as impartial algorithm this is because it uses the same quantum time for
all processes on the queue irrespective of their burst time. Questions on optimal time quantum to be used by RR and
Shortest Job First (SJF) has also been on the mind of researchers. This is because time quantum determines the
performance of the algorithm. If the time quantum assigned is relatively high, it may lead to First Come First Serve while
high context switch is obtained with low time quantum. This study proposes An Improved Time Varying Round Robin
Algorithm (ITVRR).The proposed algorithm was benchmarked with the following algorithms using Gantt chart:
Revamped Mean Round Robin (RMRR), Round Robin, First Come First Serve (FCFS) and SJF. The metrics used to
benchmark the algorithms are Average Waiting Time (AWT), Average Turnaround Time (AVT) and Context Switch (CS).
The result obtained after the experiment suggests that the proposed ITVRR tends to improve context switch and
turnaround time compared to RR and RMRR.

Keywords: Time Varying Quantum, CPU scheduling, Round Robin, Gantt chart

ACHIEVERS JOURNAL OF SCIENTIFIC RESEARCHACHIEVERS JOURNAL OF SCIENTIFIC RESEARCH
Open Access Publications of Achievers University, Owo.

Available online at www.achieversjournal.org

Achievers J. Sci. Research

* 1 1 1 2S. S. Olofintuyi , T. O. Omotehinwa , E. O. Oyekanmi and E. A. Olajubu
1Department of Mathematical Sciences, Achievers University Owo, Nigeria

2Department of Computer Science, Obafemi Awolowo University, Ile-Ife, Nigeria

*Corresponding author: olofintuyi.sundaysamuel@gmail.com

An Improved Time Varying Quantum Round Robin
CPU Scheduling Algorithm

INTRODUCTION

Multiprogramming involves running two or more
processes simultaneously. It is one of the key
areas of operating system. Central Processing
Unit (CPU) scheduling comes in place when there
are various processes in the memory to be
executed, out of these processes; the operating
system decides which one to run first. If the CPU is
not well managed, it can result to inefficiency of
the system. Utilization of the CPU can be
maximized if the processes are allowed to be
attended to by switching the CPU among the
processes (Amar, Sandipta and Sanjay, 2015).
The main goal of switching CPU among
processes is to reduce the context switch, waiting
time, turnaround time and finally increase the
utilization of the CPU (Silberschatz, 2005). One of
the onuses of Operating System is to manage
different processes in memory such that the CPU
utilization is optimized. In order to maximize CPU
utilization, processes are required to be
scheduled in an efficient manner so that
maximum numbers of processes are serviced by
the CPU. Also, for maximum usability, CPU
scheduling has been adopted by many
researchers. This work aim at improving the
efficiency of CPU by proposing varying time
quantum and then benchmarked with RR, RMRR,

FCFS and SJF. Section II discusses the standard
algorithms used in CPU scheduling. Section III
discusses the criteria used to evaluate the
performance of a CPU. Section IV discusses the
review of literature while section V discusses the
proposed algorithm. Experimental results and
discussion were done in section VI and section VII
respectively while section VIII covers the
conclusion.

CPU SCHEDULING ALGORITHM

The conventional CPU scheduling algorithms are
FCFS, SJF, RR and priority algorithm. FCFS
algorithm operates by attending to the first process
on the queue. That is, processes are been
attended to base on their arrival. SJF operates by
attending to the process that has the shortest burst
time. Burst time is the time required for a process to
finish executing it task. RR operates by using a
quantum time. Quantum time defines the time
allotted to CPU to attend to processes on the
queue. If in any scenario, the burst time of a
process is more than the quantum time, after the
CPU have attended to the process, the process is
sent back on the waiting queue. It means, the CPU
only share it allotted quantum time with all the
processes equally. In priority scheduling algorithm,
the efficiency of the system is not considered, the
CPU only attends to processes that has the highest

31

volume 2, Issue 2, December 2019 - p. 31 - 38

ISSN Online: 2504-0141

priority. Processes would have been prioritized
before they arrived the waiting queue.

CPU SCHEDULING CRITERIA

For the aforementioned algorithms, various
metrics have been used to measure their
performance. Such metrics include context
switch, average turnaround time, average waiting
time, throughput, CPU utilization and response
time.

1. Context switch: This has to do with
storing and restoring context preempted
process in order for the execution to start
from the same position.

2. Throughput: This defines the number of
processes the CPU complete per unit time.

3. Turnaround time: This defines the time
taken by the CPU to execute a process

4. Waiting time: It defines the total number of
time that the process waits on the queue

5. Response time: it discusses the very first
time the process accesses the CPU

6. CPU

 Utilization: utilization of the CPU discusses the
usage of the CPU.

An efficient scheduling algorithm should have the
following:

1. Minimum context switch

2. Minimum turnaround time

3. Minimum waiting time

4. Minimum response time

5. Maximum CPU utilization

6. Maximum throughput.

 REVIEW OF LITERATURE

Sarvesh et al. 2018) presented an algorithm that
uses round robin and shortest job first in order to
reduce the turnaround time and waiting time. In
their work, a fixed quantum time was used for all
the processes. Whenever a process is unable to
finish it task before the quantum time lapse, the
process is placed at the end of the ready queue
and the next process with shortest burst time
takes up the

CPU but if the process finishes it task before the
quantum time lapse, the CPU can then take up
another process with the shortest burst time for
execution. At the end of their experiment, the work
was benchmarked with round robin, short job first
using turnaround time, waiting time and context
switches. The proposed algorithm performed
better than round robin, shortest job first using the
metrics aforementioned.

Bhavin and Manoj (2018) presented
another approach for scheduling algorithm of
round robin using dynamic quantum time in
cloud environment. In their methodology, the
quantum time was obtained by taking the mean
and median of all the burst time of the processes.
The mean is considered by taking the average of
all the burst time while the median was
considered if the result was odd, them the middle
number will be the median otherwise, if the result
is even, then the median will be the mean of two
central numbers. The round robin algorithm
used was derived from MRRA algorithm and
SRBRR algorithm. After the experiment, the
result derived was compared to RR and MRRA in
terms of AWT, AVT and CS.

Ahmed, et al. (2018) presented a novel
method based on priority for enhancement
round-robin scheduling algorithm. The authors
proposed an algorithm to optimize the
performance of CPU scheduling. They suggest
in their work, that all new processes into the
queue that has the lowest burst time be
prioritized over other processes on the queue.
Immediately the burst time of the process is
equal to the quantum time, rescheduling should
be done to give a new priority to a new task. The
proposed algorithm was compared to the
traditional round robin with respect to average
waiting time and average turnaround time.

LaxmiJeevani, Madhuri and Sarada
(2018) proposed an improvised round robin
scheduling algorithm and comparison with
existing round robin CPU scheduling algorithm.
The objective of the proposed algorithm is to
reduce the average waiting time and also reduce
the average turnaround time so that they can
improve on the existing round robin algorithm.

Sushruta, et al, (2017) presented an
optimized round robin scheduling algorithm. In
their work, the author(s) adopted the normal
approaches of round robin in the first cycle after
which the CPU is allocated to the smallest burst
time of all the processes. Two different scenarios
were considered which includes processes with
arrival time and processes with zero arrival time.
At the end of their research work, the proposed
algorithm performed better than the traditional
round robin in terms of waiting term and
turnaround time.

Sachin, et al. (2016) proposed a
revamped algorithm where a round robin CPU
scheduling algorithm was used. In their work,
seven processes were used with arrival time and
burst time respectively. The proposed algorithm
produces minimal context switch, average
waiting time and average turnaround time
compared to RR algorithm. Also, in their work,
two queue(s) were introduced in which one
stands for ready queue and the other pre-ready
queue. The authors combined both RR and
FCFS algorithm in their proposed model; the
average burst time for all the processes was

32

Achievers J. Sci. Research

used as the quantum time. After the experiment,
the result was compared to (RR), FCFS, and
Shortest Job First (SJF). The proposed model
performed better in Response time (RT), than
FCFS, SJF and RR.

Pandaba and Prafulla (2016) presented
another algorithm for resources allocation in cloud
computing. The methodology uses two registers
where one was used to store the remaining burst
time of the processes and the other register was
used to store the average burst time. Round robin
algorithm was adopted in their work. The quantum
time changes in which it changes to the burst time
of the processes. The burst time of the first process
in the queue is always the quantum time for the first
process while the average of the burst time of all
other processes are taken to determine the
quantum time. The work was implemented in
MATLAB and was bench-marked against the
traditional RR algorithm. After the experiment,
their proposed algorithm performed better in
turnaround time and waiting time.

Amar, Sandipta and Sanjay (2015)
proposed an optimized round CPU scheduling
algorithm with dynamic time quantum. In their
work, the burst time was arranged in ascending
order and 25 were taken as the static quantum
time for round robin. The problems used were
subdivided into two group based on their arrival
time of processes with zero arrival time and
processes without zero arrival time. The authors
also used double time quantum immediately after
the first cycle. The proposed model Dynamic
Average Burst Round Robin (DABRR) was
compared with the following algorithm: RR,
IRRVR, SARR, RP-5, MRR, and DQRRR in both
scenario of zero arrival time and non-zero arrival
time. The proposed model performed better than
the previous algorithm in term of context switch,
waiting time and turnaround time.

Manish and Faizur (2014) proposed an
Improved Round Robin Scheduling Algorithm with
Varying Time Quantum (IRRVQ). The authors
combine two out of the four algorithms in their
proposed model. The two- algorithm proposed are
round robin and shortest job first. Only one queue
was used in their work, also the processes were
arranged in the ascending order of their burst time
respectively. The quantum time changes with
respect to the burst time of each process on the
queue. The work also considers two scenarios
with zero and non-zero arrival time. The
experimental result shows that IRRVQ perform
better than the traditional RR in term of average
waiting time and average turnaround time.

Abdulrazaq, Saleh and Junaidu (2014) also
presented a New Improved Round Robin CPU

Scheduling algorithm. Two queues were used
which are ready queue and arrival queue in the
round robin algorithm. The quantum time was
obtained by taking the average of the process
burst time. During execution of the process, if
the quantum time finishes before the execution
of the process, the CPU checks whether the
burst time is less than or equal to the quantum
time. If it does, then the CPU is reallocated to the
same process but if it does not, the process is
sent back to the arrival queue while the CPU
attends to another process in the ready queue.
The experimental result shows that SJF has the
minimal waiting time and turnaround time while
RR and Longest Job First with Combination
Burst Time (LJF+CBT) produced minimal
context switching and average response time.
The proposed model only out-performed RR
and IRR in term of AWT, AVT and CS.

PROPOSED ALGORITHM (ITVRR)

The proposed algorithm for the implementation of
ITVRR is listed below. Figure 1 shows the
flowchart for the proposed algorithm

Step 1: Start

Step 2: Create pre-queue

Step 3: Create ready queue

Step 4: Create post queue
Step 5: Arrival of processes to pre-queue
Step 6: Load all processes to ready queue
Step 7: In the ready queue, apply the

following
Step 8: Time quantum = 50 percentile of burst

time of processes in the ready queue
Step 9: CPU attends to the first process in the

ready queue
Step 10: If burst time of process equals to

quantum time, then calculate AWT,
AVT and CS

 Step 11: If burst time not equal to quantum
time, then load process to post queue

 Step 12: Use dynamic quantum time with
respect to burst time of processes in
the post queue.

 Step 13: If burst time of processes in the post
queue is equal to quantum time, then
calculate AWT, AVT and CS

 Step 14: If ready queue is not empty GOTO
Step 6

 Step 15: END

EXPERIMENTAL RESULTS

Table 1 shows seven different processes with their
arrival time and burst time.

33

Achievers J. Sci. Research

Figure 1: Flowchart of the proposed algorithm

34

Achievers J. Sci. Research

Processes Arrival time Burst time

P0 0 14

P1 2 58

P2 4 18

P3 5 30

P4 1 28

P5 6 46

P6 3 7

Table 1: Processes with arrival time and burst time

P0 P4 P1 P6 P2 P3 P5

 0 14 42 100 107 125 155 201

Figure 2: Depicts FCFS Gantt chart

P0 P6 P2 P4 P3 P3 P1

 0 14 21 39 67 97 143 201

P0 P4 P1 P6 P2 P3 P0 P5 P4 P1 P6 P2 P3 P0

 0 5 10 15 20 25 30 35 40 45 50 52 57 62 66

P5 P4 P1 P2 P3 P5 P4 P1 P2 P3 P5 P4 P1 P3

 66 71 76 81 86 91 96 101 106 109 114 119 122 127 132

P5 P4 P1 P3 P5 P1 P5 P1 P5 P1 P5 P1 P5 P1

 132 137 142 147 152 157 162 167 172 177 182 187 188 193 201

Figure 4: Depicts RR Gantt chart

P0 P4 P1 P6 P2 P3 P5 P6 P4 P1 P6 P2 P3 P3 P5 P5 P1

 0 2 4 6 8 10 12 14 26 52 79 84 100 127 128 155 172 201

P0 P4 P1 P2 P3 P5 P6 P1 P5

 0 14 42 72 90 120 150 57 185 201

Table 2: Depicts performance of some existing and proposed algorithms

Algorithm Avg. waiting time Avg.Turnaround time Number of switch

FCFS 74.57 103.28 6

SJF 51.42 80.14 6

RR 99 127.7 42

RMRR 77.28 106 14

ITVRR 86.8 93 8

The following formula were used to calculate the performance metric

For Waiting time = Turnaround Time - Burst Time
For turnaround time = Burst time + Waiting time Or Completion time –
Arrival Time

35

Achievers J. Sci. Research

DISCUSSION

From the experiment conducted using Gantt
chart, five different algorithms were used and the
following metrices were used to evaluate them.
AWT, AVT and number of context switches. The
AWT, AVT and context switch for FCFS were
74.57, 103.28 and 6 respectively. For SJF, the
AWT was 51.42, AVT was 80.14 and number of
context switch was 6. Also, for RR, 99, 127.7, and
42 were the AWT, AVT and number of context
switch. Futhermore, the AWT, AVT and context
switch for RMRR were 77.28, 106, and 14
respectively. For the proposed ITVRR algorithm,
AWT, AVT and number of context switch were
86.8, 93 and 8 respectively. Figure 7, 8 and 9
depicts the chart for all the algorithms using AVT,
AWT and number of context switch as an
evaluation metric.

CONCLUSION

In this study, a new approach was introduced
for CPU scheduling called An Improved Time
Varying Round Robin Algorithm (ITVRR). The
approach was an improvement on the existing
RR algorithm. ITVRR algorithm was
compared with other algorithms such as
FCFS, SJF, RR and RMRR for CPU
scheduling. From the results obtained, it can
be observed that ITVRR outperformed RR
and RMRR algorithms with respect to AVT and
CS but RMRR algorithms only outperformed
our proposed model only in AWT. Also, ITVRR
outperformed FCFS with respect to AVT.

Figure 2: Comparison of FCSF, SJF, RR, RMRR and ITVRR using Avg. waiting time

Figure 3: Comparison of FCSF, SJF, RR, RMRR and ITVRR using Avg. turnaround time

36

Achievers J. Sci. Research

Figure 4: Comparison of FCSF, SJF, RR, RMRR and ITVRR using context switch

37

Achievers J. Sci. Research

REFRENCES

Ahmed, S., A, Hadeel, M., T, and Khalid, W., A.
(2018). Novel Method Based on Priority for
Enhancement Round-Robin Scheduling
Algorithm. Journal of Theoretical and Applied
Information Technology. Vol.96, Issue 13.

Bhavin, F., and Manoj, P. (2018). Dynamic Time
Quantum Approach to Improve Round Robin
Scheduling Algorithm in Cloud Environment.
International Journal of Scientific Research in
Science, Engineering and Technology. Vol.4,
Issue 4

Sarvesh, K., Gaurav, K., Komal, J., and Aditi, J.
(2018). An approach to reduce turnaround time
and waiting time by the selection of round robin
and shortest job first algorithm. International
Journal of Engineering & Technology, Vol.7,
Issue 2, pp. 667-672

LaxmiJeevani, M., Madhuri, T., and Sarada, D.
(2018). Improvised Round Robin Scheduling
Algorithm and Comparison with Existing Round
Robin CPU Scheduling Algorithm. IOSR Journal
of Computer Engineering. Journal of Computer
Engineering. Vol. 20, Issue 3.

Sushruta, M., Soumya, S., Sunil, M., and Brojo, K.
M. (2017). CPU Scheduling using an Optimized
Round- Robin Schedul ing Technique.
International Journal of Recent Research
Aspects, Vol. 4, Issue 3, pp. 221- 225

Sachin, K., Piyush, P., Singh, P. T., and Prashant,
M. (2016) A Revamped Mean Round Robin
(RMRR) CPU Schedu l i ng A lgo r i t hm.
International Journal of Innovative Research in
Computer and Communication Engineering. Vol.
4, Issue 4.

Pandaba, P., and Prafulla, B. (2016). Modified
Round Robin Algorithm for Resource Allocation in
Cloud Computing. International Conference on
Computational Modeling and Security. Procedia
Computer Science 85 (2016) 878 – 890

Amar, R., Sandipta, K. S., and Sanjay, K. S.
(2015) an Optimized Round Robin CPU
Scheduling Algorithm with Dynamic Time
Quantum. International Journal of Computer
Science, Engineering and Information
Technology (IJCSEIT), Vol. 5, No.1.

Abdulrazaq, A., Saled, E, A., and Junaidu, B.S.
(2014). A New Improved Round Robin (NIRR)

38

Achievers J. Sci. Research

CPU Scheduling Algorithm. International
Journal of Computer Applications. Vol. 90 No 4,
pp. 24 - 35

Manish, K. M., and Faizur, R. (2014). An
Improved Round Robin CPU Scheduling
Algorithm With Varying Time Quantum.

International Journal of Computer Science,
Engineering and Applications (IJCSEA)
Vol.4, No.4

 Silberschatz, P. B., Galvin, E., and Gagne, G.
(2005) Operating System Concepts, John
Wiley and Sons Inc, pp 15.1-167

	FINAL REVISED VERSION ISSUE @ VOL @
	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80
	Page 81
	Page 82
	Page 83
	Page 84
	Page 85
	Page 86
	Page 87
	Page 88

