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Abstract: Simultaneous Localisation and Mapping allows a mobile robot to map the environment and 

concurrently localizes itself within the map.The main contribution of this research work is the application 

of a sliding window technique to extract corner features from acoustic images using Mechanically 

Scanned Imaging Sonar. The sliding window technique has traditionally been applied to laser data 

obtained in indoor environments. The change in application environment and the use of Mechanically 

Scanned Imaging Sonar data have motivated important differences with respect to the original algorithm. 
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1. Introduction 
 

Simultaneous Localisation and Mapping (SLAM) is 

a process by which a mobile robot maps the 

environment and concurrently localizes itself within 

the map. An Autonomous Underwater Vehicle 

(AUV) is a robotic vehicle with actuators, sensors 

and on-board intelligence to carry out a mission 

without human interference. SLAM allows a mobile 

robot to start at an unknown location in an unknown 

environment. SLAM relies on the feature extraction 

process to extract appropriate and reliable features 

with which to build stochastic maps. Feature 

extraction is a process by which sensor data is 

processed to obtain well defined entities (features) 

which are recognisable and can be repeatedly 

detected [14,15]. Underwater navigation is 

especially challenging because of the limited 

sensorial modes. Acoustic devices are the most 

common choice in underwater domains while the 

use of cameras and laser scanners is limited to 

applications where the vehicle operates near the 

surface, in clear waters or very near the sea floor 

[3]. Underwater SLAM systems using Mechanically 

Scanned Imaging Sonar (MSIS) usually model 

natural environments as point features 

corresponding to clusters of acoustic data [4,5,6,7]. 

Line feature extraction to take advantage of 

structured elements common in underwater 

scenarios like marinas, drilling platforms, harbours, 

channels, dams e.t.c. using MSIS has been reported 

in [4,11]. Other feature types in underwater 

environments have also been reported; Harris 

corners from cameras images [18, 19], SURF 

features using stereo vision [20], generalized 

features (blobs) by fusing camera and sonar data 

[21]. Something that this author found missing in 

underwater literature is a stochastic map or 

environment model based on the use of corner 

features from underwater acoustic data. Also 

missing in literature is a method to extract corner 

features from underwater acoustic data. Although 

MSISs have been used in the extraction of point 

features and line features, they have not been used 

for the extraction of corner features. The use of 

corner features has been traditionally related to the 

use of 2D laser scans in indoor environments using 

sliding window techniques [22, 23]. Extraction of 

corner features corresponding to intersecting arcs 

from a ring of Polaroid sonar sensors using Hough 

transform in an indoor environment was reported in 

[24]. Structured man-made underwater 

environments such as marinas, drilling platforms, 

harbours, channels and dams are not unusual 

environments for AUVs especially during inspection 

and maintenance missions. New types of features 

such as corners, planes and curves could offer richer 

representations of the environment and hence open 

the door for underwater SLAM systems to a wide 

range of environments and applications [3].  

 

This paper describes the use of a sliding window 

corner detector to extract corner features from real 

data scans collected in a swimming pool using 

MSIS. The data was first segmented; this filters out 

the noise without loss of significant information and 
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reduces the computational cost of processing the 

data. The vehicle was equipped with a MSIS which 

is able to perform user selectable scan sectors up 

360 degrees [8]. 

 

 

2. Sonar theory and Operation 
 

MSIS performs user selectable scan sectors up to 

360 degrees in a horizontal 2D plane by 

continuously rotating a mechanically actuated 

transducer head at pre-defined angular increments in 

a process called imaging. For each of the resulting 

angular positions, an acoustic fan beam is produced; 

this fan beam has a narrow horizontal beam-width 

and a wide vertical beam-width. When the emitted 

acoustic signal travels through the water and 

encounter an object in its path, part of the energy 

returns to the transducer. Using the time of flight of 

the returning wave and the speed of sound in water, 

the range at which the signal originated can be 

determined. If the signal returning to the transducer 

head is analysed for a period of time, a series of 

echo amplitude vs. range measurements are 

produced. Each individual measurement is referred 

to as a bin, and the set of bins obtained from a single 

emitted wave is called a beam. An acoustic image of 

the environment is formed by accumulating this 

information along a scan sector [1, 3]. 

 

2.1 Sonar noise characteristics 

 

 Transducer reverberation noise: When the 

transducer is energised and transmits the sound 

pulse (e.g. piezoelectric effect), the transducer 

continues to oscillate for a period of time until 

these oscillations die out completely. This 

would be evident out to 2m from the sonar head 

[16]. 

 

 Receiver Self Noise: This is very low level 

background noise which is apparent in any 

tuner/mixer circuit. It is a low level audible hiss 

that will be amplified by the sonar gain 

application. The Micron DST Sonar used in this 

research has a very good signal-to-noise ratio; 

hence this background noise level is relatively 

very low and requires considerable gain to be 

amplified to a level that becomes obstructive to 

sonar imaging. A threshold value above zero 

would normally be set to eliminate this 

background noise [16]. 

 

 Backscatter: This is energy returned or 

reflected back to the receiver off any reflective 

object in the near vicinity. This can be any 

imagery on the display excluding any receiver 

self noise, transducer reverb noise or pickup 

from another acoustic device [16]. 

 

 Aeration in the water: Any small air bubbles 

(may not be visible to the naked eye) in close 

vicinity of the sonar will reflect the sound beam 

and appear as low intensity background wash on 

the image. This may be due to moving targets or 

if the swimming pool has an operative filter 

[16]. 

 

2.2 Interpretation of acoustic images 

 

In some cases an acoustic image of a target will be 

similar to an optical image of the same target. Due 

to the nature of the ultrasonic signals, an acoustic 

image will always have less resolution than an 

optical image and hence it may be difficult to 

interpret acoustic images [1 & 3]. Darker areas 

depict no echo return and lighter areas shows high 

echo intensity returns from objects. Generally hard 

surfaces are good reflectors of acoustic energy; they 

do not absorb too much energy and one expects 

strong echo returns from these types of surfaces. 

The image contains receiver self noise which appear 

as low intensity returns, transducer reverberation, 

aeration which appear as low intensity background 

wash and backscatter [16]. Multiple reflections 

continue out to the maximum operating range and 

decrease in intensity as the range increases. Water 

surface reflections appear as low intensity circular 

returns equidistant from the sonar head. What is 

seen less than 2m from the transducer is some 

reverberation noise, this is evident out to 0.6m. 

Other reflections are ambiguous and difficult to 

make out [16]. 

 

Having a couple of objects located within an 

enclosed environment further complicates the 

image; the result is that the transmitted sound pulse 

may bounce off a number of surfaces before 

returning to the sonar. Filtering out these multiple 

reflections is a tedious process; they are not so easy 

to remove automatically. In those situations one 

may only be able to clean the image so much, 

leaving walls and targets reflections and also some 

multiple reflections in with that. There is a TVG 

look-up table already programmed into the Micron 

which automatically applies gain correction for 

through water attenuation. This applies around a 

0.2dB/m attenuation correction for the 700 kHz 

transmit signal of the Micron DST. The problem of 

signal attenuation depends on the water and target 

conditions [16]. 
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2.3 Decoding MSIS scan-line data 

 

The sonar beam consists of a series of sN  echo 

amplitude bins with either 4 or 8 bit resolution. 

Assuming the sonar is configured to sense objects 

up to a maximum range sR , the 
thn  echo amplitude 

bin is mapped to a discrete range nr  from the 

transducer head according to: 

 

rn nr     (1) 

 

, where r  is the sample range and it is given by: 

 

s

s
r N

R
    (2) 

 

This echo amplitude vs. distance information is used 

to detect features and obstacles within the 

environment [2]. Figure 1 shows echo amplitude vs. 

range information of a signal obtained from a 

swimming pool. High amplitude returns below 2m 

are due to amplified transducer reverberations noise. 

A large amplitude return at about 3m was due to the 

pool wall. Large amplitude returns below 2m are 

ignored since the sonar’s operating range is from 2m 

to 75m; this eliminates the transducer reverberation 

noise.  

 

 
Figure 1: Echo amplitude vs. range information  

 

 

2.4 Limitations of MSIS 

 

MSIS presents some differences when compared to 

electronically scanned sonars. MSIS gathers data by 

rotating a mechanically actuated transducer head at 

pre-defined angular steps. This results in a 

continuous data flow and a low scan frequency as 

compared to electronically scanned sonars which 

take snap shots of the environment. The transducer 

head takes a considerable amount of time to 

complete a scan. To deal with continuous flow of 

data, data is separated into 360 degrees scan sectors. 

Although the first and last beams are placed near 

each other, there is a considerable time lapse 

between instances in which they were taken and at 

times the vehicle would have drifted. The drift leads 

to distortions in the acoustic image. These 

distortions are due to both translational and 

rotational motions. The amount of time to complete 

a scan sector also varies depending on the range 

settings of the sensor. Higher range settings will 

normally require more time to complete a scan 

sector because the signal travels a longer distance. 

These effects have to be taken into account when 

dealing with MSIS mounted on a vehicle. These 

distortions can be ignored for slow moving vehicles. 

For higher velocities, it is important to have a 

suitable localisation system in the form of dynamics 

model or dead reckoning sensors to provide position 

feedback which can then be used to correct the 

acoustic image [3]. Data from MSIS is in polar 

form, normally for easy interpretation, the acoustic 

image is represented in Cartesian coordinates. The 

author reported that with the increment of range, a 

loss in the measurement resolution occurs because 

the bins are more dispersed as a result of angular 

aperture between consecutive beams. This effect, 

which is inherently represented in polar, will 

produce gaps between beams in the Cartesian 

image. As a result of this, it is always advisable to 

use raw polar measurements rather than a 

conversion to Cartesian representation because the 

original data is changed [3]. Apart from all the 

mentioned bottlenecks of MSIS, there are some 

benefits of using of this sensor; it is a relatively low 

cost sensor as compared to electronically scanned 

sonars. Its capability to perform 360 degree scans 

sectors means that it can track features for longer 

periods of time even those behind the vehicle. This 

makes it attractive for underwater SLAM systems 

because there are normally fewer features in 

underwater environments [3]. 

 

 

 

3. Feature Extraction from MSIS 
 

3.1 Data segmentation 

 

Objects in the environment appear as high echo-

amplitude returns in acoustic images. This means 

that only part of the data stored in each beam is 

useful for feature extraction [3,11,10]. As a result, a 

segmentation process can be carried out in order to 

extract more significant information. This process 
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reduces the computational cost of processing the 

data since fewer data points are considered. The 

segmentation process consists of three steps which 

are carried out beam to beam. The first step is to 

consider only those bins with an intensity value 

above a low level noise threshold; a typical 

operating noise threshold value is 13 decibels [8]. 

This filters out low level background noise, 

transducer reverberation noise and noise due to 

aerations which might be present in the water. The 

second step is to apply a higher level threshold value 

of 22 decibels; this step filters out some of the 

multiple reflections off the water surface, walls and 

objects, and leaves behind significant information 

corresponding to objects. The third step involves 

selecting bins with the highest intensity return 

values above the threshold value of 22 decibels. A 

highest intensity return is defined as a bin with a 

maximum amplitude return value along a scan-line. 

This further segments the data without loss in 

significant information. Another way of doing this is 

to select bins that are local maxima [3, 11], this 

result in one or more high intensity bins being 

selected per scan-line. Multiple bin selection makes 

feature detection possible when more than one wall 

intersects with a single beam. This kind of scenario 

arises when the structured environment contains 

steps or ramps [3]. 

 

3.2 Corner feature characteristics sought 

 

Corner features to take advantage of structures with 

intersecting planar surfaces found in man-made 

underwater environments such as marinas, dams, 

drilling platforms, channels, harbours e.t.c. are 

sought. In this paper corners are defined by 

intersecting planar surfaces making angles between 

70 and 120 degrees. 

 

3.3 Sliding window corner detector algorithm 

 

Similarly, following the segmentation process and 

highest intensity return selection, ranges 

corresponding to the highest intensity return bins are 

also determined according to equations 1 and 2 and 

accumulated into a buffer until a required number 

has been stored. These ranges correspond to ranges 

to objects in the environment. The bearing 

information and the current vehicle pose 

corresponding to the selected scan-lines are also 

stored. The current vehicle pose is used to 

compensate for motion induced distortions in the 

acoustic images. The accumulated range-bearing 

(polar) measurements are then feed into the corner 

detector. The polar measurements are first 

transformed to Cartesian coordinates. Then a fixed 

size window made up of three data points is defined. 

The assumption made is that the three data points 

define the sides of a triangular window (Figure 2). 

The middle sample point is taken as the one of the 

vertices of the window, and this is the sample point 

where the angle is checked. The other two sample 

points are taken as the other vertices of the window, 

these are at the same number of points away from 

the mid-point sample. For instance, a sample 

window of size 13 will have a mid-point at sample 

point 7, and the other two vertices at sample points 1 

and 13 respectively. Let k , i  and j  represent the 

mid-point, the first and the last sample points 

respectively in the window. 

 

 
 

Figure 2: Window for the corner detector 

 

After a window has been defined, the process of 

corner searching starts by computing the distance 

),( jidis  between the vertices at i  and j . This 

distance is determined by: 

 

 22 )()(),( ijij yxsqrtjidis   (3) 

 

If the distance ),( jidis  is greater than a pre-defined 

threshold value then the mid-point of the window is 

shifted to the next data point and the process is 

repeated. If the distance ),( jidis  is lower than a 

pre-defined threshold value, then an angle check is 

performed. But first, the distance ),( jkdis  between 

vertices at k  and j , and the distance ),( ikdis  

between vertices at k  and i  have to be determined, 

these are given as follows: 

 

 22 )()(),( kjkj yxsqrtjkdis   (4) 

 

 22 )()(),( kiki yxsqrtikdis   (5) 

 



BIE Journal of Engineering and Applied Sciences                                                                      Volume 4 Issue 1 – June 2013 

-55- 

This information is then used to determine the angle 

  at the mid-point sample. The angle   is 

determined using a re-arranged dot product rule 

according to: 

 
















ji

ji

ba

ba .
arccos   (6) 

 

where the vectors ia  and ib  are given as: 

 

 kikii yxa     (7) 

 

 
kjkji yxb     (8) 

 

If the angle   is outside the pre-defined minimum 

and maximum threshold values then the mid-point 

of the window is shifted to the next data point and 

the process is repeated. If the angle   is within the 

pre-defined minimum and maximum threshold 

values, then an inward validation is performed by 

picking corresponding sample points from each side 

of the window centred at the current mid-point and 

repeating the corner validation all the way to the last 

two points closest to the mid-point. All this point 

pairs must pass the distance and angle tests for a 

corner to be initialised at the current mid-point. This 

makes sure that corners are not initialised at outlier 

sample points but on the other hand it makes the 

algorithm computationally expensive if the window 

selected is too wide. Figure 3 shows the execution 

of the corner feature extraction algorithm. 

 
 

 

Figure 3: Corner feature extraction flow chart 

 

 

4. Experimental set-up 
 

The experiment involved an AUV navigating in a 

swimming pool and at the same time logging data 

from the on-board sensors. Real data collected from 

the sensors was then used to evaluate the corner 

feature extraction algorithm. Section 4.1 describes 

the swimming pool in Pretoria-Hatfield where the 

tests were performed. Section 4.2 briefly describes 

the experimental platform used during the data 

collection. Section 4.3 describes the MSIS used to 

scan the environment for map building purposes. 

Sections 4.4 and 4.5 describe the acoustic beaconing 

system used to provide the absolute vehicle position 

estimates and the electronic compass used estimate 

the vehicle heading respectively. Section 4.6 

describes the water pressure sensor used to estimate 

the depth of the vehicle. 
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4.1 Test environment 

 

The tests were performed in a 15m by 15m, and 5m 

deep public swimming pool located in the Pretoria-

Hatfield. Figure 4 shows the swimming pool during 

one of the experiments. 

 

 
 

Figure 4: Swimming pool in Pretoria-Hatfield  

 

 

4.2 Experimental platform 

 

The AUV used for the work reported in this paper is 

shown in Figure 5. The vehicle was designed and 

built by the Mechatronics and Micro Manufacturing 

(MMM) group in the division of Material Science 

and Manufacturing (MSM) of the Council for 

Scientific and Industrial Research (CSIR) Pretoria. 

The AUV is a simple, small and low-cost vehicle 

comprising a water tight compartment made from 

aluminium. The compartment houses the computer 

system, batteries, ballast tanks, sensors and the 

electronic components. A metal frame is mounted 

around the vehicle to protect the compartment and 

external sensors from damage. The vehicle has been 

designed to be neutrally buoyant. The vehicle was 

also equipped with a water pressure sensor, an 

electronic compass and an acoustic beaconing 

system described in sections below. 

 

 
 

Figure 5: AUV; the experimental platform  

 

 

 

 

4.3 Mechanically Scanned Imaging Sonar 

 

The experiments were carried out using the Micron 

DST Sonar (see Figure 6). The sonar was mounted 

underneath the AUV in an inverted mode and used 

to scan the environment in which the vehicle was 

operating. The sonar’s operating range was set at 

13.5m and it was sampled at 0.0225m. A 

mechanical step angle of 0.9 degrees was used to 

generate 360 degrees scan sectors. With these range 

settings, 600 data bins were returned by the sonar 

head, each bin was sampled at 0.00003 seconds. 

Individual sonar beams had a return signal travel 

time of about 0.018 seconds. The sample time 

between individual beams was about 0.1 seconds 

which is about five times the signal travel time. As a 

result, there was enough waiting time before the 

sonar could be ping again and hence this avoided 

interference from consecutive echo returns. An 8-bit 

mode was used; bin return values were represented 

by numbers in the range of 0 to 256. For the range 

settings used in this thesis, the sonar head required 

about 40 seconds to complete a 360 degrees scan 

sector. 

 

 
 

Figure 6: Tritech Micron DST Sonar 

  

4.4 Acoustic Beaconing System 

 

An acoustic beaconing system was used to 

determine the absolute positions of the AUV. This 

provided ground truth about the positions of the 

vehicle. The system uses four sonar transducers; 

three were placed at known positions and were used 

as beacons. One receiving transducer was mounted 

on top of the vehicle. The beacon positions were 

used to estimate the absolute positions of the 

vehicle. The system has a maximum 2D position 

error of 0.21m [17]. 
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4.5 Electronic Compass 

 

An electronic compass was used to estimate the 

heading of the AUV. The device used is a 

HMC6343 by Honeywell. This device was 

calibrated before every dive to reduce the effects of 

disturbances due to other magnetic objects [17]. 

 

4.6 Water pressure sensor 

 

An LM series low-pressure media-isolated pressure 

sensor was used to estimate the vehicle depth. The 

device used is an LM series low-pressure media-

isolated pressure sensor [17]. 

 

 

5. Results and Discussions 
 

5.1 Validation of the corner feature extraction 

algorithm 

 

The tests were carried out in a 15m by 15m by 5m 

deep swimming pool at Hatfield-Pretoria. The 

vehicle was equipped with MSIS. Its operating 

range was set to 13.5m using equation 1 and 2, at a 

step angle of 0.9 degrees and a 360 degrees scan 

sector mode was used. A range of 2m from the sonar 

head was ignored because its operational range 

settings are 2m to 75m and therefore any echo 

returns less 2m were considered to be due noise. An 

acoustic beaconing system was used to provide 

absolute vehicle positions. The vehicle maintained a 

constant depth of 1m using feedback from the 

pressure sensor. The vehicle also maintained a 

constant heading using feedback from the compass. 

The vehicle was assumed to be static during the 

environment scanning process.  

 

Figure 7 shows a raw acoustic image in polar form. 

The image was colour coded to distinguish between 

strong intensity returns from objects and weak 

intensity returns as a result of noise and multiple 

reflections. Regions with intensity return values > 0 

but < 13 decibels were sampled at a blue colour, 

regions with intensity return values >13 but < 22 

decibels were sampled at a green colour, regions 

with intensity return values > 22 decibels were 

sampled at a red colour. The expected swimming 

pool walls are shown with thick black lines. 

 

 
Figure 7: Showing a 360 degrees sector acoustic 

image  

 

The more targets you have within an enclosed 

environment such as a swimming pool, the harder it 

becomes to identify some of the reflections because 

sound bounces off a number of targets before 

returning to the sonar head. This causes multiple 

reflections off targets. The process of interpretation 

of acoustic images was further complicated by such 

issues as receiver self noise, transducer 

reverberation noise and backscatter. In Figure 7, 

some of the reflections are quite clear. Others are a 

bit ambiguous and are difficult to make out. 

Multiples off the wall reflections are annotated in 

green; these continue out to the maximum range and 

decreases in intensity as the range increases. 

Multiples off targets reflections are annotated in 

brown; these continue out to the maximum range 

and increases in intensity as the range increases. 

Reflections from the water surface appear as low 

intensity circular returns equidistant from the sonar 

head. Bottom reflections also make up the noise but 

they are generally of a higher intensity than surfaces 

reflections because of the hardness of the reflecting 

material. There is a further high amplitude reflection 

annotated in purple that looks to be a bottom 

reflection. There are also a lot of low level returns 

sampled at blue on the image which are likely to be 

receiver self noise that is amplified and aerations in 

the water. So when tries to filter out these multiple 

reflections, they are not easy to remove 

automatically. In these situations the image may 

only be cleaned so much, leaving behind walls and 

targets returns and also some multiple reflections in 

with that. Very little or no signal from the walls 

further away was reflected back to the direction of 

the transducer, this appears to be a result the oblique 

grazing angle that the beam strikes the wall surface, 

e.g. most of the sound energy reflects outward with 
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very little signal reflected back in direction of the 

transducer. The walls were also obscured to some 

extend by the targets. 

Figure 8 shows the first step of segmentation; after 

applying a low level noise threshold value of 13 

decibels. Low level background noise was 

eliminated. Some of the low intensity multiple 

reflections off walls and targets, some low intensity 

surface and bottom reflections were also eliminated. 

A range of 2m from the sonar was ignored; this 

eliminated the transducer reverberation noise. 

 
 

Figure 8: The first step of the segmentation 

 

Figure 9 shows the second step of the segmentation; 

applying a threshold value of 22 decibels. This 

process left behind significant information 

corresponding to objects in the environment. 

Reflections from the swimming pool walls are 

clearly visible. Some of the high intensity multiple 

reflections off walls and targets and, some high 

intensity surface and bottom reflections were further 

eliminated. 

 
 

Figure 9: The second step of segmentation 

 

Following the application of a threshold value of 22 

decibels, bins with the highest intensity return 

values were selected along individual beams; the 

third step of the segmentation process. Figure 10 

shows an image in polar form obtained after 

selecting the highest intensity returns. This process 

further segmented the data and left behind 

significant information corresponding to swimming 

pool walls. 

 
 

Figure 10: The third step of segmentation 

 

Following the highest intensity return selection, a 

sliding window corner detector was then applied to 

search for corner features in the scan. Figure 11 

shows the extracted corner features (blue stars). The 

expected swimming pool wall is shown with the 

black lines. Although the algorithm manages to 

detect a corner where it was expected, two corners 

were extracted. The second ‘ghost’ corner was due 

to an outlier point in the data. This is because 

acoustic data is sparsely distributed. Mapping 

outliers or ‘ghost corners’ can have catastrophic 

effects on the real time implementation of EKF 

SLAM because the computational complexity of the 

SLAM process is quadratic the number of features 

mapped, and hence the outliers or ‘ghost’ features 

corrupt the EKF SLAM process. A smoothing filter 

is applied to make data points evenly distributed. 

This will get rid of outlier points and hence make 

corner extraction more reliable. Reliable corner 

feature extraction means that underwater SLAM 

systems can be employed in a wider range of 

environments and applications. 

 

 
Figure 11: Extracted corner features  

 

 

6. Recommendations for Further Work 
 

Further work needs to be done by applying a 

smoothing filter to achieve an even distribution of 
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data samples and hence reduce the effects of outlier 

points. Mapping outliers or ‘ghost corners’ can have 

catastrophic effects on the real time implementation 

of EKF SLAM. 

 

 

7. Conclusion 
 

This work presents the use of a sliding window 

corner detector to extract corner features from real 

data scans using MSIS. The algorithm has 

traditionally been applied to laser data obtained in 

indoor environments. The application of the sliding 

window technique in underwater environment using 

MSIS to scan the environment present important 

differences which must be taken into consideration 

when processing the data. A segmentation process is 

carried out to extract more significant information 

from the scans since only part of the data is useful. 

This also reduces the computational cost of 

processing the data since fewer data points are 

considered..The current vehicle pose is used to 

compensate for motion induced distortions in the 

acoustic images. The results presented show the 

viability of the proposed method. 
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