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Abstract

The dynamic response of non-uniformly prestressed thick beam under distributed moving load
travelling at varying velocity is investigated in this paper. In order to obtain solution to the
dynamical problem, a technique based on the method of Galerkin with the series representation
of Heaviside function, was first used to transform the equation and thereafter the transformed
equations were solved using Strubles asymptotic method and Laplace transformation techniques
in conjunction with convolution theory.The displacement response for moving distributed force
and moving distributed mass models for the dynamical problem are calculated for various time t
and presented in plotted curves.
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Foremost, it is found that, the moving distributed force is not an upper bound for the accurate
solution of the moving distributed mass problem, which shows that the inertia term must be
considered for accurate assessment of the response to moving distributed load of elastic structural
members . Analyses further shows that increase in the values of the structural parameters such
as axial force N, shear modulus G and foundation stiffness K reduces the response amplitudes
of non-uniformly prestressed thick beam under moving distributed loads. In order to verify the
accuracy of the present method, the dynamic responses of a simply supported Timoshenko beam
obtained by the present method and the frequency-domain spectral element method (SEM) are
compared at two different velocities. The results shows that the dynamic responses obtained
by the present method are almost identical to those obtained by using the SEM. Finally, for
the same natural frequency, the critical speed for the beam transversed by moving distributed
force is greater than that under the influence of a moving distributed mass. Hence resonance is
reached earlier in the moving distributed mass problem.

Keywords: Non-uniformly prestressed; varying velocity; strubble’s asymptotic method; Galerkin’s
method; resonance.

1 Introduction

The analysis of interaction between continuous elastic system and subsystem (load) has been a
fundamental problem in structural dynamics for more than a century. However, it is especially
in bridge engineering that this problem finds its widest field of application. This study helps to
recognize when the structure is approaching an overstressed condition. In the history of elastic
system-subsystem interaction, theoretically, the problem of moving load was first tackled by Willis
[1]. In his research work, he considered the case in which the structural mass was considered smaller
than the mass of the load and obtained an approximate solution to the problem. In the analysis
of the effects of vehicles moving over large-span bridges, Inglis [2] developed a theory according to
where the gravitational effects of the moving loads may be separated from the inertia ones. In the
analysis, the force is considered as moving along the beam while the mass of the vehicles acts at a
definite constant point, say xo. The inertia action of the mass in the deformed structure is described
by the D’Alembert’s principle as a product of mass and acceleration. When the inertia effect of
the moving load is considered, the governing differential equation of motion becomes complex and
cumbersome and no longer has constant coefficients. In particular, the coefficients become variable
and singular. If the inertia effect of the moving load is neglected, the problem is termed moving force
problem and when it is retained, it is termed moving mass problem. The approximation model in
which the vehicle-truck interaction is completely neglected has been described by [3] as the crudest
approximation known to the literature of assessing the dynamic response of an elastic system which
supports moving concentrated masses. It is assumed that these concentrated loads act at a point
on the structure and along a single line in space as they move. That is, the moving load is modelled
as a lumped load. However, in practice, it is well known that loads are actually distributed over a
small segment or over the entire length of the structural member they traverse. When the moving
load is distributed, the problem of investigating the load-structure interaction becomes much more
complicated. Concentrated forces are mere mathematical idealization, and cannot be found in the
real world, where forces are either body forces acting within the bulk of the material or within
the volume. Among several authors who have worked extensively in this area of study are [4] who
studied the dynamic deflection to non-uniform Rayleigh beam when under the action of distributed
load. [5] studied the dynamic behaviour under moving distributed masses of non-uniform Rayleigh
beam with general boundary conditions. [6] studied the motion of non-uniformly prestressed tapered
beams with exponentially varying thickness resting on Vlasov foundation under variable harmonic
load moving with constant velocity. However, in all the aforementioned works, Bernoulli-Euler and
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Rayleigh beams model are often employed. Until recently, the effects of shear deformation and
rotatory inertia on the dynamic response of Timoshenko beam were rarely discussed. The problem
of thick beams under the action of a variable travelling transverse load was studied by [7] and
in his study, he found that the transverse response of a deep beam decreases as the moving load
frequency increases. [8] Studied the problem of vibration of multi-span Timoshenko beam. His
study shows that the effects of rotatory inertia and shear deformation cause the modal frequencies
of the Timoshenko beam to be less than those of Bernoulli-Euler beam. [9] Studied the dynamic
response of a uniform deep beam resting on a Winkler elastic foundation and excited by a moving
load. However, it is remarked at this juncture that in most of the existing literature in dynamics of
structure under moving loads, effect of axial force on a dynamic system, method of solution have
been restricted to numerical simulating [10, 11]. In the same vein, the problem of assessing the
dynamic response of elastic structures carrying moving loads has so far received scanty attention
in the literature for moving loads at non-uniform velocities. The more practical cases when the
velocities at which these loads travel are no longer constants, but vary with time have received
very little attention in the literature survey [12]. This is as a result of the complex space-time
dependencies inherent in such problems. Specifically, even when the inertia effects of the moving
load is neglected, analytical solutions involving integral transformation are both intractable and
cumbersome.

Moreover, it is remarked at this juncture that practical problems such as acceleration and breaking
of automobile on roadways and highway bridges, taking off and landing of air-crafts on runway
and breaking and acceleration forces in the calculation of rails and railway bridges in which the
motion is not uniform, but a function of time have intensified the need for the study of behaviour
of structures under the action of loads moving with variable velocities. Consequently, this study
investigates the dynamic response of non-uniformly prestressed of thick beam under distributed
moving load travelling at varying velocities using analytical method as a method of solution.

2 Theory and Formulation of The Problem

In this study, the problem of a non-uniformly prestressed elastic structure and carrying a mass M
is investigated. The beam’s properties such as moment of inertia I and the mass per unit length
µ of the beam remained constant along the span of length L. The transverse displacement V(x, t)
and angular displacement φ(x, t) of the beam travelling at a non-uniform velocity as shown in
fig (1# a and 1# b) is given as [13]

∂

∂x

[
K

′
GA

(
φ (x, t)− ∂V (x, t)

∂x

)]
+µ

∂2V (x, t)

∂t2
+KV (x, t)−G

∂2V (x, t)

∂x2
− ∂

∂x

[
F (x)

∂V (x, t)

∂x

]
= q(x, t)

(2.1)
and

∂

∂x

[
EI

∂φ (x, t)

∂x

]
+K

′
GA

[
−∂V (x, t)

∂x
− φ (x, t)

]
− Iρ

∂2φ (x, t)

∂t2
= 0 (2.2)

where, g, denotes the acceleration due to gravity, d2

dt2
is a convective acceleration operator, ∂2

∂t2
is

the support beam’s acceleration at the point of contact with the moving mass, df(t)
dt

∂2

∂x∂t
, is the

well-known coriolis acceleration,
(

df(t)
dt

)2
∂2

∂x2 , is the centripetal acceleration of the moving mass

and d2f(t)

dt2
∂
∂x

, is the acceleration component in the vertical direction when the moving load is not
constant.
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Fig. 1#. Geometry of a variable axial force on the deflection of thick beam.

where, t, is the time coordinate, ρ, is the density of the beam, A, is the cross sectional area,

EI, is the flexural stiffness, x, is the spatial coordinate, K, is the foundation stiffness, G, is the

shear modulus, F(x), is the non-uniform axial force, K
′
, is the constant dependent on the shape

of the beam and q(x, t), is the uniform distributed load acting on the beam. In this problem, the

distributed load moving on the beam under consideration has mass commensurable with the mass

of the beam. Consequently, the load inertia is not negligible but significantly affects the behaviour

of the dynamical system. Thus, the distributed load q(x, t) takes the form

q(x, t) = MgH [x− f (t)]

[
1− 1

g

d2V (x, t)

dt2

]
;

d2

dt2
=

∂2

∂t2
+ 2

df(t)

dt

∂2

∂x∂t
+

(
df(t)

dt

)2
∂2

∂x2
+

d2f(t)

dt2
∂

∂x

(2.3)

In the same vein, the direction/distance travelled by the load on the beam at any given instance
of the time and the prestressed terms are given as

f (t) = xo + ct+
1

2
at2; F (x) = No

(
1 + sin

πx

L

)
(2.4)

where, xo, represents the point of application of force Pf (x, t) at any instant time t = 0, c, is the
initial velocity and a, is the acceleration of the motion and N0 is the constant axial force.

Moreover, the moving load is assumed to be of mass, M, and time, t, is assumed to be limited to
that interval of time within which the mass M is on the beam. i.e.

0 ≤ f(t) ≤ L (2.5)

and H [x− f(t)] is the Heaviside function, which is a typical engineering function made to measure
engineering application involving function that are either ”on” or ”off” and it is defined as

H(x) =

{
1, x > ct.

0, x ≤ ct.
H [x− f(t)] =

{
1, x ≥ f(t).

0, x < f(t).
(2.6)

It is remarked at this juncture that the beam under consideration is assumed to have simply
supported ends beam at x=0 and x=L. Thus the boundary conditions are

V (0, t) = V (L, t) = 0;
∂φ(0, t)

∂x
=

∂φ(L, t)

∂x
= 0 (2.7)
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The initial conditions however without any loss of generality is given as

V (x, 0) =
∂V (x, 0)

∂t
= 0; φ (x, 0) =

∂φ(x, 0)

∂t
= 0 (2.8)

Therefore, substituting Eqs. (2.3) and (2.4) into (2.1) and (2.2), we obtains

µ
∂2V

∂t2
− K

′
GA

(
∂2V

∂x2
−

∂φ

∂x

)
− No

(
1 + sin

πx

L

)
∂2V

∂x2
−

Noπ

L
cos

πx

L

∂V

∂x
+ K V (x, t) − G

∂2V

∂x2

+ MH

[
x −

(
xo + ct +

1

2
at

2
)][

∂2V

∂t2
+ 2 (c + at)

∂2

∂x∂t
+ (c + at)

2 ∂2V

∂x2
+ a

∂V

∂x

]
= MgH

[
x −

(
xo + ct +

1

2
at

2
)]
(2.9)

and ρI
∂2φ

∂t2
− K

′
GA

(
∂V

∂x
− φ

)
− EI

∂2φ

∂x2
= 0 (2.10)

3 Solution Procedure

Unlike cases where axial force is constant, finite integral transform is inapplicable and we resort to
a modification of the approximate analytical best suited for solving diverse problem in dynamics of
structures generally referred to as Galerkin’s method. Thus, we use the Galerkin’s method described
in [14, 15] to reduce the simultaneous second order partial differential equations to a sequence of
simultaneous second order ordinary differential equations. Thus, a solution of the form

V (x, t) =
n∑

m=1

Ym(t)Um(x); φ (x, t) =
n∑

m=1

Zm (t)Xm(x) (3.1)

are sought, where Um(x) = sinmπx
L

and Xm(x) = cosmπx
L

are chosen as a suitable kernel of
the Galerkin’s method in Eqs. (2.9) and (2.10) for simply supported boundary condition, due to
displacement and rotation respectively. Therefore, substituting Eq. (3.1) into Eqs. (2.9) and (2.10)
respectively, yields

n∑
m=1

{
µUm(x)Ÿm(t)−K

′
GA

[
Um

” (x)Ym(t)−Xm

′
(x)Zm(t)

]
−No

[
Um

”(x) + sin
mπx

L
Um

”(x) +
π

L
cos

mπx

L
Um

′
(x)

]
Ym(t) +

[
KUm(x)−GUm

”(x)

]
Ym(t)

+MH

[
x−

(
xo + ct+

1

2
at2

)][
Um(x)Ÿm (t) + 2(c+ at)Um

′
(x)Ẏm(t) + (c+ at)2Um

”(x)Ym(t)

+aUm

′
(x)Ym(t)

]
−

[
x− (xo + ct+

1

2
at2)

]}
= 0

(3.2)

and

n∑
m=1

[
ρIXm (x) Z̈m (t) +K

′
GAXm (x)Zm (t)− EIUm

” (x)Zm (t)−K
′
GAUm

′
(x)Ym (t)

]
= 0

(3.3)

In order to determine an expression for Ym(t) and Zm(t), it is required that the expression on the
left hand side of Eqs. (3.2) and (3.3) are orthogonal to the functions sin kπx

L
and cos kπx

L
respectively.
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Thus, we have

R1(m, k)Ÿm(t) +R2(m, k)Ym(t) +R3(m, k)Zm(t) +
M

µ

[
R4(m, k)Ÿmt(t) + 2(c+ at)R5(m, k)Ẏm(t)

+(c+ at)2R6(m, k)Ym(t) + aR7(m, k)Ym(t)

]
=

Mg

µ
R8(k)

(3.4)

and S1 (m, k) Z̈m (t) + S2 (m, k)Zm (t)− S3 (m, k)Ym (t) = 0 (3.5)

where

R1 (m, k) = I1 =

∫ L

0
sin

mπx

L
sin

kπx

L
dx; R2 (m, k) = R2a (m, k)−R2b (m, k)−R2c (m, k)−R2d (m, k) ;

−R2e (m, k)−R2f (m, k) ; R2a (m, k) =
K

µ
I1; R2b (m, k) = −

m2π2K
′
GA

µL2
I1; R2c (m, k) = −

m2π2No

µL2
I1

R2d (m, k) = −
m2π2No

µL2
I2; R2e (m, k) =

mπ2No

µL2
I3; R2f (m, k) = −

m2π2G

µL2
I1; R3 (m, k) = −

mπK
′
GA

µL
I1

R4 (m, k) = I4; R5 (m, k) =
mπ

L
I5; R6 (m, k) = −

m2π2

L2
I4; R7 (m, k) =

mπ

L
I5; R8 (k) = I6; S1 (m, k) = I7;

S2 (m, k) = S2a (m, k)− S2b (m, k) S2a (m, k) =
K

′
GA

ρI
I7; S2b (m, k) = −

m2π2E

ρL2
I7;

S3 (m, k) =
mπK

′
GA

ρIL
I7 I2 =

∫ L

0
sin

πx

L
sin

mπx

L
sin

kπx

L
dx; I3 =

∫ L

0
cos

πx

L
cos

mπx

L
sin

kπx

L
dx

I4 =

∫ L

0
H

[
x−

(
xo + ct+

1

2
at2

)]
sin

mπx

L
sin

kπx

L
dx I5 =

∫ L

0
H

[
x−

(
xo + ct+

1

2
at2

)]
cos

mπx

L
sin

kπx

L
dx

I6 =

∫ L

0
H

[
x−

(
xo + ct+

1

2
at2

)]
sin

kπx

L
dx; I7 =

∫ L

0
cos

mπx

L
cos

kπx

L
dx

(3.6)

Using the property of Heaviside function, it can be expressed in series form given by [14] i.e.

H

[
x−

(
xo + ct+

1

2
at2

)]
=

1

4
+

1

π

∞∑
n=0

sin (2n+ 1) πx

[
x−

(
xo + ct+

1

2
at2

)]
(3.7)

Thus, in view of (3.6) and (3.7), it can be shown that

R1 (m, k) Ÿm (t) + R2 (m, k)Ym (t) + R3 (m, k)Zm (t) +
M

µ

{[
I1

4
+

1

π

∞∑
n=0

cos (2n + 1) π
[
x −

(
xo + ct + 1

2
at2
)]

2n + 1
I8a

−
1

π

∞∑
n=0

sin (2n + 1) π
[
x −

(
xo + ct + 1

2
at2
)]

2n + 1
I8b

]
Ÿm(t) + 2 (c + at)

[
I9

4
+

1

π

∞∑
n=0

cos (2n + 1) π
[
x −

(
xo + ct + 1

2
at2
)]

2n + 1
I9a

−
1

π

∞∑
n=0

sin (2n + 1) π
[
x −

(
xo + ct + 1

2
at2
)]

2n + 1
I9b

]
Ẏm(t) −

m2π2

L2
(c + at)

2
[

I1

4
+

1

π

∞∑
n=0

cos (2n + 1) π
[
x −

(
xo + ct + 1

2
at2
)]

2n + 1
I8a

−
1

π

∞∑
n=0

sin (2n + 1) π
[
x −

(
xo + ct + 1

2
at2
)]

2n + 1
I8b

]
Ym(t) +

mπ

L
a

[
I9

4
+

1

π

∞∑
n=0

cos (2n + 1) π
[
x −

(
xo + ct + 1

2
at2
)]

2n + 1
I9a

−
1

π

∞∑
n=0

sin (2n + 1) π
[
x −

(
xo + ct + 1

2
at2
)]

2n + 1
I9b

]
Ym (t)

}
=

Mg

µ
I6

(3.8)

and S1 (m, k) Z̈m (t) + S2 (m, k)Zm (t)− S3 (m, k)Ym (t) = 0 (3.9)
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where I8a =

∫ L

0

sin(2n+ 1)sin
mπx

L
sin

kπx

L
dx; I8b =

∫ L

0

cos(2n+ 1)sin
mπx

L
sin

kπx

L
dx

I9 =

∫ L

0

cos
mπx

L
sin

kπx

L
dx; I9a =

∫ L

0

sin(2n+ 1)cos
mπx

L
sin

kπx

L
dx;

I9b =

∫ L

0

cos(2n+ 1)cos
mπx

L
sin

kπx

L
dx

(3.10)

Evaluating the integrals I1 to I9b, thereafter substituting the results of the integrals into Eqs. (3.8)
and(3.9), yields

Ÿm (t) +∝1
2Ym (t) +Q1Zm (t) + εo

{[
L

4
+

1

π

∞∑
n=0

cos (2n+ 1) π
[
x−

(
xo + ct+ 1

2
at2

)]
2n+ 1

I8a

−
1

π

∞∑
n=0

sin (2n+ 1) π
[
x−

(
xo + ct+ 1

2
at2

)]
2n+ 1

I8b

]
Ÿm(t) + 2 (c+ at)

[
−

KL

π(m2 − k2)

+
2

π

∞∑
n=0

cos (2n+ 1) π
[
x−

(
xo + ct+ 1

2
at2

)]
2n+ 1

I9a −
2

π

∞∑
n=0

sin (2n+ 1) π
[
x−

(
xo + ct+ 1

2
at2

)]
2n+ 1

I9b

]
Ẏm(t)

−
m2π2

L2
(c+ at)2

[
L

4
+

2

π

∞∑
n=0

cos (2n+ 1) π
[
x−

(
xo + ct+ 1

2
at2

)]
2n+ 1

I8a

−
2

π

∞∑
n=0

sin (2n+ 1) π
[
x−

(
xo + ct+ 1

2
at2

)]
2n+ 1

I8b

]
Ym(t) +

mπ

L
a

[
−

KL

π(m2 − k2)

+
2

π

∞∑
n=0

cos (2n+ 1) π
[
x−

(
xo + ct+ 1

2
at2

)]
2n+ 1

I9a

−
2

π

∞∑
n=0

sin (2n+ 1) π
[
x−

(
xo + ct+ 1

2
at2

)]
2n+ 1

I9b

]
Ym (t)

}
=

2Mg

πkµ

[
cos

πk
(
xo + ct+ 1

2
at2

)
L

− (−1)−1

]
(3.11)

and Z̈m (t) +∝2
2Zm (t)−Q2Ym (t) = 0 (3.12)

where

∝1
2 =

R2 (m, k)

R1 (m, k)
; ∝2

2 =
S2 (m, k)

S1 (m, k)
; Q1 =

R3 (m, k)

R1 (m, k)
; Q2 =

S3 (m, k)

S1 (m, k)
; εo =

M

µL
(3.13)

Eqs. (3.11) and (3.12) are now the fundamental equations governing the dynamical problem of the
non-uniformly prestressed thick beam under distributed moving load travelling at varying velocity.
It follows that two special cases of (3.11) arises, namely Moving Force and Moving Mass problem.

3.1 Non-uniformly Prestressed Thick Beam Traversed by Moving
Force

In this section, an approximate model of the differential equation describing the response of the
elastic structure is obtained by neglecting inertia terms. i.e. εo=0. Thus, after some simplification
by writing acceleration ’a’ in terms of velocity, thereafter using trigonometry identity Eqs. (3.11)
and (3.12) are of the form

Ÿm (t) +∝f1
2Ym (t) +Q1Zm (t) = Po [Cnxcosθt − Snxsinθt −Rk] (3.14)

and Z̈m (t) +∝f2
2Zm (t)−Q2Ym (t) = 0 (3.15)
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where ∝f1
2 = ∝1

2; ∝f2
2 = ∝2

2; Po =
2Mg

πkµ
; no =

k

L
; Rk = (−1)−1 Cnx = cosnoπ xo;

Snx = sinnoπ xo; θ = noUo; Uo =
1

2
(u+ c)

(3.16)

Where Uo is the average velocity at any point and u is the velocity at any instant time t. Subjecting
Eqs. (3.14) and (3.15) to a Laplace transform in conjunction with the initial boundary condition
defined in (2.8), one obtains simple algebraic simultaneous equations define as

Y m (s)
(
s2 +∝f1

2)+Q1Zm (s) = Po

[
Cnx

s

s2 + θ2
− Snx

θ

s2 + θ2
− Rk

s

]
(3.17)

and Zm (s)
(
s2 +∝f1

2)−Q2Y m (s) = 0 (3.18)

Solving Eqs. (3.17) and (3.18) simultaneously, yields

Zm (s) =
PoQ2

ωf1
2 − ωf2

2

(
1

s2 + ωf2
2
− 1

s2 + ωf2
2

)(
Cnx

s

s2 + θ2
− Snx

θ

s2 + θ2
− Rk

s

)
(3.19)

and

Y m (s) =
Po

ωf1
2 − ωf2

2

(
∝f2

2 − ωf2
2

s2 + ωf2
2

− ∝f2
2 − ωf1

2

s2 + ωf2
2

)(
Cnx

s

s2 + θ2
− Snx

θ

s2 + θ2
− Rk

s

)
(3.20)

where

ωf1
2 =

1

2

[(
∝f1

2 +∝f2
2)−√

(∝f1
2 −∝f2

2)2 − 4Q1Q2

]
;

ωf2
2 =

1

2

[(
∝f1

2 +∝f2
2)+√

(∝f1
2 −∝f2

2)2 − 4Q1Q2

] (3.21)

Thus, Eqs. (3.19) and (3.20) reduce to that of finding Laplace inversion of Zm (s) and Y m (s). To
do this, we adopt the following representations

g (s) =

(
Cnx

s

s2 + θ2
− Snx

θ

s2 + è2
− Rk

s

)
; f1 (s) =

(
1

s2 + ωf2
2
− 1

s2 + ωf2
2

)
;

f2 (s) =

(
∝f2

2 − ωf2
2

s2 + ωf2
2

− ∝f2
2 − ωf1

2

s2 + ωf2
2

) (3.22)

So that the Laplace inversion of (3.19) and (3.20) is the convolution of fi(s) and g(s) defined as

fi (s) =

∫ t

0

fi (t− u) g (u) du (3.23)

Thus, the Laplace inversion of the two equations respectively given as

Zm (t) =
PoQ2

ωf1
2 − ωf2

2

[
1

ωf2
(CnxI11 − SnxI13 −RkI15)−

1

ωf1
(CnxI12 − SnxI14 −RkI16)

]
(3.24)

and

Ym (t) =
Po

ωf1
2 − ωf2

2

[
∝f2

2 − ωf2
2

ωf2
(CnxI11 − SnxI13 −RkI15)

−∝f2
2 − ωf1

2

ωf1
(CnxI12 − SnxI14 −RkI16)

] (3.25)

8
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where

I11 =

∫ t

0

sinωf2 (t− u) cosθu du; I12 =

∫ t

0

sinωf1 (t− u) cosθu du I13 =

∫ t

0

sinωf2 (t− u) sinθu du;

I14 =

∫ t

0

sinωf1 (t− u) sinθu du I15 =

∫ t

0

sinωf2 (t− u) du; I16 =

∫ t

0

sinωf1 (t− u) du

(3.26)

Therefore, solving the integrals in (3.26) and then substitute the results into (3.24) and (3.25),
after inversion using Eq. (3.1) one obtains

φ (x, t) =
n∑

m=1

PoQ2

ωf1
2ωf2

2 (ωf1
2 − ωf2

2) (ωf1
2 − θ2) (ωf2

2 − θ2)

{
ωf1

2 (ωf1
2 − θ2

) [
Cnxωf2

(
cosθt

−cosωf2t
)
− Snxωf2 (ωf2sinθt− θsinωf2t)−Rk

(
ωf2

2 − θ2
)
(1− cosωf2t)

]
− ωf2

2 (ωf2
2 − θ2

)
×[

Cnxωf1 (cosθt− cosωf1t)− Snxωf1 (ωf1sinθt− θsinωf1t)−Rk

(
ωf1

2 − θ2
)
(1− cosωf1t)

]}
cos

mπx

L

(3.27)

and V (x, t) =

n∑
m=1

PoQ2

ωf1
2ωf2

2 (ωf1
2 − ωf2

2) (ωf1
2 − θ2) (ωf2

2 − θ2)

{
ωf1

2 (ωf1
2 − θ2

) (
∝f2

2

− ωf2
2)× [

Cnxωf2 (cosθt− cosωf2t)− Snxωf2 (ωf2sinθt− θsinωf2t)−Rk

(
ωf2

2 − θ2
)
(1− cosωf2t)

]
−ωf2

2 (ωf2
2 − θ2

)
×

(
∝f2

2 − ωf1
2) [Cnxωf1 (cosθt− cosωf1t)− Snxωf1 (ωf1sinθt− θsinωf1t)

−Rk

(
ωf1

2 − θ2
)
(1− cosωf1t)

]}
sin

mπx

L

(3.28)

Eqs. (3.27) and (3.28) respectively represent the angular and transverse displacements of a non-
uniformly prestressed thick beam under distributed moving force travelling at varying velocity.

3.2 Non-uniformly Prestressed Thick Beam Traversed by Moving
Mass

In this section, the solution to the entire equation Eq. (3.11) is sought when no terms of the
coupled differential equation is neglected. an approximate analytical solution to Eq. (3.11) is resort
to. Thus, we used a modification of the asymptotic method due to Strubble’s technique which is
often used in treating oscillatory system. To this ends, equation (3.11) is rearranged to take the
form

Ÿm (t) +
2εouQ2 (n,m, k)

1 + εoQ1 (n,m, k)
Ẏm (t) +

∝f1
2 +mL

2u2εoQ1 (n,m, k) + amLεoQ2 (n,m, k)

1 + εoQ1 (n,m, k)

=
Po [cosnoπ (xo + uot)−Rk]

1 + εoQ1 (n,m, k)

(3.29)

9
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where

Q1 (n,m, k) =

[
L

4
+

2

π

∞∑
n=0

cos (2n + 1) π (xo + Uot)

2n + 1
I8a −

2

π

∞∑
n=0

sin (2n + 1) π (xo + Uot)

2n + 1
I8b

]
;

Q2 (n,m, k) =

[
−kL

π
(
m2 − k2

) +
2

π

∞∑
n=0

cos (2n + 1) π (xo + Uot)

2n + 1
I9a −

2

π

∞∑
n=0

sin (2n + 1) π (xo + Uot)

2n + 1
I9b

]
;

mL =
mπ

L
; a =

u − c

t

(3.30)

With this technique, one seek the modified frequency corresponding to the frequency of the free
system due to the presence of the effect of the moving mass. Following the procedures extensively
discussed in [14, 15], the homogeneous part of equation (3.29) is simplified to take the form

Ÿm (t) +∝m1
2Ym (t) = 0 (3.31)

where

∝m1 = ∝f1

[
1− ∈

8

(
4amk

∝f1
2 (m2 − k2)

− (mπu)2

∝f1
2L

− L

)]
(3.32)

is called the modified natural frequency representing the frequency of the system due to the presence
of the moving mass. Thus, the entire equation (3.11) and (3.12) reduces to

Ÿm (t) +∝m1
2Ym (t) +Q1Zm (t) = Po [Cnxcosθt − Snxsinθt −Rk] (3.33)

and Z̈m (t) +∝2
2Zm (t)−Q2Ym (t) = 0 (3.34)

(3.33) and (3.34) together, these equations are analogous to equations (3.14) and (3.15). Thus,
using the same procedure as in the previous section, one obtains

φ (x, t) =

n∑
m=1

PoQ2

ωm1
2ωm2

2 (ωm1
2 − ωm2

2) (ωm1
2 − θ2) (ωm2

2 − θ2)

{
ωm1

2 (ωm1
2 − θ2

)
×[

Cnxωm2 (cosθt− cosωm2t)− Snxωm2 (ωm2sinθt− θsinωm2t)−Rk

(
ωm2

2 − θ2
)
(1− cosωm2t)

]
−ωm2

2 (ωm2
2 − θ2

) [
Cnxωm1 (cosθt− cosωm1t)− Snxωm1 (ωm1sinθt− θsinωm1t)

−Rk

(
ωm1

2 − θ2
)
(1− cosωm1t)

]}
cos

mπx

L

(3.35)

and

V (x, t) =

n∑
m=1

PoQ2

ωm1
2ωm2

2 (ωm1
2 − ωm2

2) (ωm1
2 − θ2) (ωm2

2 − θ2)

{
ωm1

2 (ωm1
2 − θ2

)
×

(
∝f2

2 − ωm2
2) [Cnxωm2 (cosθt− cosωm2t)− Snxωm2 (ωm2sinθt− θsinωm2t)

−Rk

(
ωm2

2 − θ2
)
(1− cosωm2t)

]
− ωm2

2 (ωm2
2 − θ2

) (
∝f2

2 − ωm1
2) [Cnxωm1 (cosθt− cosωm1t)

−Snxωm1 (ωm1sinθt− θsinωm1t)−Rk

(
ωm1

2 − θ2
)
(1− cosωm1t)

]}
sin

mπx

L

(3.36)

Eqs. (3.35) and (3.36) respectively represent the angular and transverse displacements of a non-
uniformly prestressed thick beam under distributed moving mass travelling at varying velocity.

10
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4 Comments On The Closed Form Solutions

Theoretically speaking, the deflections of the Thick beam may increase beyond bounds. Practically,
this means that the beam is in a state of resonance. The speed of the load which brings about
resonance effect in the system is termed the critical speed. Eq. (3.28) clearly shows that the simply
supported non-uniformly prestressed thick beam and traversed by a moving distributed force reaches
a state of resonance whenever

ωf1 = θ; ωf2 = θ; ωf1 = ωf2 (4.1)

but θ = kUo
L

, so that Ucr = ωf1L/K is the critical speed of the moving force system.

Similarly, when

the same system is under a moving mass, equation (3.36) shows that the corresponding resonance

condition is

ωm1 = θ; ωm2 = θ; ωm1 = ωm2 (4.2)

Using Eq.(3.21), (3.32), (4.1), and (4.2), it easily shown that

ωm1 = ωf1

[
1 −

∈
4

(
4amk

∝f1
2
(
m2 − k2

) −
(
mπu

)2
∝f1

2L
− L

)[
1 +

∝f2
2

2ωf1
2

−
∈
16

(
4amk

∝f1
2
(
m2 − k2

) −
(
mπu

)2
∝f1

2L
− L

)(
1 −

∝f2
2

2ωf1
2

)]] 1
2

(4.3)
and

ωm2 = ωf2

[
1 −

∈
4

(
4amk

∝f1
2
(
m2 − k2

) −
(
mπu

)2
∝f1

2L
− L

)[
1 +

∝f2
2

2ωf2
2

−
∈
16

(
4amk

∝f1
2
(
m2 − k2

) −
(
mπu

)2
∝f1

2L
− L

)(
1 −

∝f2
2

2ωf2
2

)]] 1
2

(4.4)

are less than one for all m, it can be deduce that, for the same natural frequency, the critical
speed for the system consisting of a simply supported non-uniformly prestressed thick beam and
traversed by moving distributed force with varying speed is greater than that of moving distributed
mass problem. Thus, for the same natural frequency of the non-uniformly prestressed thick beam,
resonance is attained earlier in the moving distributed mass system than in the moving distributed
force system.

5 Analysis of Result and Discussion

In order to illustrate the analysis in view, the uniform beam of length L=17.5 m is considered. The
load initial velocity c=30 ms−1, Young modulus E=2.02×1011 Nm−3, moment of inertia I=.0012
m4, π=22/7, cross sectional area A=7.175 m2, density of the beam µ=2400 kgm−3, shear coefficient

K
′
=5/6, shear modulus G=7.7E×103 Nm−2, load’s acceleration a = 8ms−2 and the gravitational

acceleration g=9.8 ms−2 are used. The transverse displacement and angular displacement of the
beam are calculated and plotted against time for various values of axial force N with different values
of length L of the beam. The results are as shown on the various graphs below.

11
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Fig. 1. Transverse displacement & Rotation of the non-uniformly prestressed thick
beam under distributed moving load travelling at varying velocity for various values

of axial force N and for fixed values of G(77000) and K(40000) and traversed by
moving distributed force.

Fig. 2. Transverse displacement & Rotation of the non-uniformly prestressed thick
beam under distributed moving load travelling at varying velocity for various values
of foundation stiffness K and fixed values of G(77000) and N(40000) that traversed

by moving distributed force.

Fig. 3. Transverse displacement & Rotation of the non-uniformly prestressed thick
beam under distributed moving load travelling at varying velocity for various values
of foundation modulus G and fixed values of N(40000) and K(40000) that traversed

by moving distributed force.
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Fig. 4. Transverse displacement & Rotation of the non-uniformly prestressed thick
beam under distributed moving load travelling at varying velocity for various values

of axial force N and for fixed values of G(77000) and K(40000) and traversed by
moving distributed mass.

Fig. 5. Transverse displacement & Rotation of the non-uniformly prestressed thick
beam under distributed moving load travelling at varying velocity for various values
of foundation stiffness K and fixed values of G(77000) and N(40000) that traversed

by moving distributed mass.

Fig. 6. Transverse displacement & Rotation of the non-uniformly prestressed thick
beam under distributed moving load travelling at varying velocity for various values
of foundation modulus G and fixed values of N(40000) and K(40000) that traversed

by moving distributed mass.
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Fig. 1, Fig. 2 and Fig. 3 shows the transverse displacement and rotation responses of a non-
uniformly prestressed thick beam under distributed moving load travelling at varying velocity under
the action of moving distributed force for various values of (i) axial force N and for fixed values
of other parameters; (ii) various values of foundation stiffness K and for fixed values of other
parameters and (iii) values of shear modulus G and for fixed values of other parameters. The result
shows that as N, K and G increases, the deflection/rotation of the beam decreases. Similar results
are obtained when the beam is subjected to moving mass as shown in fig.4, fig.5 and fig.6.

Fig. 7. Transverse displacement & Rotation of the non-uniformly prestressed thick
beam under distributed moving load travelling at varying velocity for various values
of X and fixed values of N(40000), K(40000) and G(77000) that traversed by moving

distributed force.

Fig. 8. Transverse displacement & Rotation of the non-uniformly prestressed thick
beam under distributed moving load travelling at varying velocity for various values
of U and fixed values of N(40000), K(40000) and G(77000) that traversed by moving

distributed force.

Fig. 9. Transverse displacement & Rotation of the non-uniformly prestressed thick
beam under distributed moving load travelling at varying velocity for various values
of X and fixed values of N(40000), K(40000) and G(77000) that traversed by moving

distributed mass.
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Fig. 10. Transverse displacement & Rotation of the non-uniformly prestressed thick
beam under distributed moving load travelling at varying velocity for various values
of U and fixed values of N(40000), K(40000) and G(77000) that traversed by moving

distributed mass.

Fig. 11. Comparison of the moving force and moving mass cases of Transverse
displacement & Rotation of the non-uniformly prestressed thick beam under

distributed moving load travelling at varying velocity for fixed values of N(40000),
K(40000) and G(77000).

Fig. 12. Comparison of the present method and SEM method U=40 & U=50 of the
non-uniformly prestressed thick beam under distributed moving load travelling at

varying velocity for fixed values of N(40000), K(40000) and G(77000).

Fig. 7 shows the transverse displacement and rotation responses of a non-uniformly prestressed
thick beam under distributed moving load travelling at varying velocity for various values of load
position xo and for fixed values of N(40000), G(77000) and K(40000) and traversed by moving
distributed force. The graph shows that as xo increases, the deflection and rotation of the beam
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decreases. Similar results are obtained when the simply supported thick beam is subjected to
partially distributed mass travelling at varying velocity as shown in fig. 9. The displacement and
rotation of the beam for various values of average velocity U at any point and for fixed values of
axial force N, foundation stiffness K and shear modulus G for various travelling time t are shown
in fig. 8. It is observed that as the value of K increases, the deflection/rotation of the beam
decreases. Similar results are obtained when the beam is subjected to moving mass as shown in fig.
10. Finally, fig. 11 depicts the comparison of the transverse displacement of moving distributed
force and the moving distributed mass cases. clearly, the response amplitude of moving distributed
mass is greater than that of the moving distributed force problem. This important result has been
reported in [12, 14, 15, 16, 17, 18], hence the inertia effects of a moving load must be considered
when heavy loads are involved. It also shows that moving distributed force solution is not always
an upper bound to the solution of a moving distributed mass problem.

6 Conclusion

In this paper, a procedure involving the Galerkin’s method and integral transform technique has
been used to solve the problem of a non-uniform beam when it is subjected to constant and harmonic
variable magnitude moving loads. The objective is to study the behavior of the dynamical system.
In particular, analytical solution in series form is obtained for the deflection of the elastic beam and
the effects of foundation stiffness K and the axial force N on the vibrating system are investigated.
Analytical solution and numerical result in plotted curves show that as the value of foundation
stiffness K and axial force N increase, the deflection profile of the non-uniform beam decreases. Thus,
in general, higher values of foundation stiffness K and axial force N reduce the risk of resonance in
a dynamical system involving non-uniform beam under the action of a moving load. To verify the
accuracy of the present method, the dynamic responses of a simply supported Timoshenko beam
obtained by the present method and the frequency-domain spectral element method (SEM) are
compared in figure 12 at two different velocities. The SEM is known as an exact element method
that provides extremely accurate solutions to one dimensional structural dynamics problems [19].
Song et al. [20] applied the SEM to a moving problem to verify its high accuracy. Figure 12 shows
that the dynamic responses obtained by the using the present method are almost identical to those
obtained by using the SEM.
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