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ABSTRACT 

In this paper, the dynamic response of prestressed thick beam subjected to moving loads using modal -

asymptotic analysis (MAA) is investigated. The main objective of this work is to obtain an analytical 

closed-form solution to this class of dynamical problems. To use MAA, accurate information is 

needed on the natural frequencies, mode shapes, orthogonality of the mode shapes, and Stubble’s 

Asymptotic technique a prior. A thorough literature survey reveals that the method has not been 

reported in the existing literature, even for simple Timoshenko beams. Thus, we present complete 

information on how to use the MAA to derive the forced vibration responses of a simply supported 

Timoshenko beam subjected to moving loads. The effects of prestress, foundation parameters, and 

moving velocity on the dynamic characteristics of the beams are studied and described in detail. To 

validate the accuracy of this method, we compare the frequency parameter with the existing literature 

which is shown to compare favorably. 

KEYWORDS: Modal-Asymptotic; Prestress; Bi-parametric foundation; moving loads; Timoshenko beam.  

1. Introduction 

 

Forced vibration of elastic bodies (stretched 

string, spring-mass system, rods, etc.) has been 

extensively studied by several authors (Prescott 

and Inglis, 1934; Muchnikov,1953; Kenny, 

1954; Stanisic, 1968; Sadiku and Leipholz, 

1989; Awodola and Omolofe, 2018) in many 

fields, from structural to mechanical to 

aerospace engineering for more than a decade. 

Aerospace engineers must understand 

dynamics to stimulate space vehicles and 

airplanes, while mechanical engineers must 

understand dynamics to isolate or control the 

vibration of machinery. In civil engineering and 

structural engineering, an understanding of 

structural dynamics is important in the design 

and retrofit of structures to withstand severe 

dynamic loading from environmental forces 

like earthquakes, strong wind, hurricanes, or 

moving loads like cars and pedestrians in the 

case of bridges. With the persistent 

development of science and technology, 

extensive application of high-performance 

materials, increasingly enlargement of the 

bridge span, and continuous increase in train 

speed and vehicle load, the problem of bridge 

vibration becomes more prominent. So far and 

during these years, many researchers have 

conducted different studies in this field. When 

moving loads are applied to a structure, 

dynamic deflections and stresses may become 
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considerably higher than those induced by 

static loads. For this reason, various structures 

subjected to moving loads have been invested. 

Examples of moving loads include trains, cars, 

trucks, cranes, and pedestrians walking or 

running across bridges. Structural systems on 

the other hand are usually modeled as beams 

and plates. These may be elastic, inelastic, or 

viscoelastic. A simple example of these 

structural systems/members are bridges, 

railways, rail, decking slabs, elevated roadways 

to moving vehicles, girders, belt-drive 

(carrying machine chains), and even floppy 

disk/cassette player heads carrying tape. It is 

remarked at this juncture that while stationary 

loads or subsystems produce stress and 

deformation that are constant, traveling loads 

produce effects that are variable functions of 

the position of the load (which is also a function 

of time). Thus, when structural members are 

under the passage of moving loads, the 

interaction between the passing load and the 

structure makes the dynamic response analysis 

very complex. Under the relevance in the 

analysis and design of railway tracks, bridges, 

elevated roadways, decking slabs, etc., the 

dynamic response of structural members under 

the passage of moving loads had been 

extensively investigated and several 

experimental and numerical studies have been 

reported in the literature in recent years 

(Muchnikov, 1953; Kenny,1954; Stanisic, et 

al., 1968; Sadiku and Leipholz, 1989; Oni and 

Omolofe, 2010, Jimoh et al., 2017; Jimoh, 

2017). In this study, the concern is beam-type 

flexure under moving loads. Many researchers 

have developed various solution techniques to 

the transverse vibration of Timoshenko beam 

which includes semi-analytical method 

(Esmailzadeh and Ghorashi, 1995), transform 

matrix method (Ashour and Farag, 2000), 

integral transform method (Milomir et 

al.1969), Galerkin’s methods (Stanisic et al. 

1974; Jimoh and Awelewa, 2017), finite 

element methods (Lou et al. 2006; Awodola et 

al. 2019) time-domain spectral element method 

(Mukherjee, et al. 2021), finite difference 

method (Esmailzadeh and Ghorashi, 1997) 

The analytical solution closed-form solution 

for a moving load problem using MAA can be 

obtained when the information regarding 

natural frequencies, mode shapes, and the 

orthogonality properties of the mode shapes are 

derived. Many researchers have developed 

general solutions for the transverse vibrations 

of a Timoshenko beam. This includes (Han et 

al., 1999), the general solution is obtained for 

two frequency range ω < ωc and ω > ωc, 

excluding the cutoff frequency ωc. (Kim et al., 

2017) and (Rensburg and Merwe, 24) 

developed a general solution that includes the 

three frequencies range i.e., ω ≤ ωc and ω ≥ ωc 

including the cutoff frequency ωc. 

However, their method of solution cannot 

handle prestressed Timoshenko beam resting 

on a bi-parametric foundation. Thus, in this 

study, we discuss the mathematical formulation 

of the general solutions of simply supported 

Timoshenko beam resting on a bi-parametric 

foundation subjected to moving loads 

considering the frequency ω  ≤ ωc and ω > ωc 

using MAA. 

 

 

2 Problem Formulations 

The The problem of prestressed Timoshenko beam 

of length 𝐿 on bi-parametric foundation subjected to 

moving loads is governed by an initial boundary 

value system of equations. This system of equations 

can be written in matrix form as 

 

𝑀
𝜕2𝑣(𝑥,𝑡)

𝜕𝑡2
+ 𝐾𝑣(𝑥, 𝑡) = 𝑄(𝑥, 𝑡) (1) 

 where  

 𝑣(𝑥, 𝑡) = {
𝑢(𝑥, 𝑡)
𝜙(𝑥, 𝑡)

} ;     𝑄(𝑥, 𝑡) = {
𝑓(𝑥, 𝑡)
0

} 
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               𝑀 = [1 0
0 1

] ;     𝐾 =

[
𝐾1 − (𝛥1 + 𝐾𝑁 + 𝐾2)

𝜕2

𝜕𝑥2
𝛥1

𝜕

𝜕𝑥

−𝛥2
𝜕

𝜕𝑥
𝛥2 − 𝑒𝑜

𝜕2

𝜕𝑥2

] 

𝛥1 =
𝜑𝐺

𝜌
;    𝛥2 =

𝜑𝐺𝐴

𝜌𝐼
;    𝐾1 =

𝐾𝑤
𝜌𝐴

;   𝐾2 =
𝐾𝑔

𝜌𝐴
;    

  𝐾𝑁 =
𝑁𝑜

𝜌𝐴
;   𝑓(𝑥, 𝑡) =

𝐹(𝑥,𝑡)

𝜌𝐴
;       𝑒𝑜 =

𝐸𝐼

𝜌𝐼
 (2) 

𝑢(𝑥, 𝑡) is the transverse displacement, 𝜙(𝑥, 𝑡) is 

the rotation of the cross section due to bending, 

𝐹(𝑥, 𝑡) is the external transverse force, 𝑁𝑜  (𝑁) is 

the axial force, 𝐾𝑤  (𝑁/𝑚
2) is the Winkler 

foundation, 𝐾𝑔  (𝑁) is the stiffness of the shear 

layer, 𝐸  (𝑁/𝑚2) is the young modulus, 𝐺  (𝑁/

𝑚2) is the shear modulus, 𝜌  (𝑘𝑔/𝑚3) is the mass 

density, 𝐴  (𝑚2) is the cross-sectional area, 

𝐼  (𝑚4) is the moment of inertia, and 𝜑 is the shear 

correction factor. The natural and geometric 

boundary conditions relevant to eq. (1) are given 

by 

𝑇𝑠(0, 𝑡) = −𝑇𝑠1(𝑡)    𝑜𝑟    𝑢(0, 𝑡) = 𝑢1(𝑡); 

   𝑇𝑠(𝐿, 𝑡) = 𝑇𝑠2(𝑡)   𝑜𝑟    𝑢(𝐿, 𝑡) = 𝑢2(𝑡); 

𝑀(0, 𝑡) = 𝜙1(𝑡)   𝑜𝑟    𝑀(0, 𝑡) = 𝜙1(𝑡);    

 𝑀(𝐿, 𝑡) = 𝜙2(𝑡)    𝑜𝑟    𝑀(𝐿, 𝑡) = 𝜙2(𝑡); 

 (3) 

where 𝑇𝑠(𝑥, 𝑡) and 𝜙(𝑥, 𝑡) are the transverse shear 

force and bending moment, respectively, given as  

 

𝑇𝑠(𝑥, 𝑡) = 𝜑𝐺𝐴(
𝜕𝑢

𝜕𝑥
− 𝜙);     𝑀(𝑥, 𝑡) = 𝐸𝐼

𝜕𝜙

𝜕𝑥
; (4) 

 and the initial conditions are given as  

𝑣(𝑥, 0) = 𝑔(𝑥);    
𝜕𝑣(𝑥,0)

𝜕𝑡
= ℎ(𝑥); (5) 

 

3  The Free and Forced Vibration 

3.1 General Solution 

In order to obtain the eigenfunctions (natural 

modes) for the model under discussion, we must 

first obtain the general solutions for the free 

vibration problem. Thus, we consider the 

homogeneous equation of eq.(1) as follow  

𝑀
𝜕2𝑣(𝑥,𝑡)

𝜕𝑡2
+ 𝐾𝑣(𝑥, 𝑡) = 0 (6) 

 We assume the the solution of eq. (6) are in the 

following form:  

𝑣(𝑥, 𝑡) = {
𝑈(𝑥)

Φ(𝑥)
} 𝑒𝑖𝜔𝑡 = 𝑉(𝑥)𝑒𝑖𝜔𝑡

𝑤ℎ𝑒𝑟𝑒    𝑉(𝑥) = 𝑑𝑒𝑟𝑥
 (7) 

 where 𝑖 is an imaginary number, 𝜔 is the angular 

frequency and 𝑟 denotes the wave number. 

Therefore, substituting eq. (7) into eq. (6) yields the 

following algebraic equations  

[
𝛽3 − 𝛽1𝑟

2 𝑟𝛥1
𝑟𝛥2 𝛽2 − 𝑒𝑜𝑟

2] 𝑑𝑒
𝑟𝑥 = {

0
0
} (8) 

 where  

𝛽1 = (𝛥1 + 𝐾𝑁 + 𝐾2); 𝛽2 = 𝛥2 −𝜔
2;  𝛽3 = 𝐾1 −

𝜔2 (9) 

 From which we obtain eigenvalues 𝑟. For the 

existence of non-trivial solutions, the determinant 

of the 2×2 matrix in eq. (8) must vanish at certain 

values of 𝑟. Thus, a dispersion equation is obtained 

as follows:  

𝑟4 −
1

𝑒𝑜𝛽1
(𝛽1𝛽2 + 𝑒𝑜𝛽3 − 𝛥1𝛥2)𝑟

2 +
𝛽2𝛽3

𝑒𝑜𝛽1
= 0 (10) 

 The eigenvalues are given by  

 

𝑟𝑖 = ±√
1

2𝑒𝑜𝛽1
[(𝛽1𝛽2 + 𝑒𝑜𝛽3 − 𝛥1𝛥2) ± ∅

∅ = √(𝛽1𝛽2 + 𝑒𝑜𝛽3 − 𝛥1𝛥2)2 − 4𝑒𝑜𝛽1𝛽2𝛽3]

 

𝑓𝑜𝑟    𝑖 = 1,2,3,4 (11) 

 The corresponding eigenvectors 𝑣𝑖 are given by  
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𝑣𝑖 = [
𝑟𝛥2
𝛽3 − 𝛽1𝑟

2]     𝑜𝑟    [
𝛽2 − 𝑒𝑜𝑟

2

𝑟𝛥1
] (12) 

 Of the four roots, the two given by 

𝑟𝑗 = ±√
1

2𝑒𝑜𝛽1
[(𝛽1𝛽2 + 𝑒𝑜𝛽3 − 𝛥1𝛥2) + ∅

∅ = √(𝛽1𝛽2 + 𝑒𝑜𝛽3 − 𝛥1𝛥2)2 − 4𝑒𝑜𝛽1𝛽2𝛽3]

 

𝑓𝑜𝑟    𝑗 =

1,2  (

13) 

 are either real or imaginary depending on the 

frequency 𝜔 (for a given material and geometry), 

and the other two roots given by  

𝑟𝑗 = ±√
1

2𝑒𝑜𝛽1
[(𝛽1𝛽2 + 𝑒𝑜𝛽3 − 𝛥1𝛥2) − ∅

∅ = √(𝛽1𝛽2 + 𝑒𝑜𝛽3 − 𝛥1𝛥2)2 − 4𝑒𝑜𝛽1𝛽2𝛽3]

 

𝑓𝑜𝑟    𝑗 = 3,4  (14) 

are always imaginary. 𝑟𝑗 are real when the 

frequency 𝜔 is less √𝛥2 and are imaginary when the 

frequency is greater than √𝛥2. We call this cutoff 

frequency or the critical frequency 𝜔𝑐. Therefore, 

we must consider two cases when obtaining spatial 

solutions: (i.e 𝜔 ≤ 𝜔𝑐  𝑎𝑛𝑑  𝜔 >   𝜔𝑐). By using the 

four eigenvalues given by eq. (11), the spatial 

solution can be written as follows: 

(a) When 0  <   𝜔  ≤ 𝜔𝑐  

 

𝑉(𝑥) ≡ {
𝑈(𝑥)

Φ(𝑥)
} = ∑4𝑖=1 𝑑𝑖𝑣𝑖𝑒

𝑟𝑖𝑥 = 𝑑1𝑢1𝑒
𝑏𝑥 + 𝑑2𝑢2𝑒

−𝑏𝑥 

+𝑑3𝑢3𝑒
𝑖𝑎𝑥 + 𝑑4𝑢4𝑒

−𝑖𝑎𝑥 (15) 

(b) When 𝜔  ≥ 𝜔𝑐  

 

𝑉(𝑥) ≡ {
𝑈(𝑥)
Φ(𝑥)

} = ∑4𝑖=1 �̅�𝑖𝑣𝑖𝑒
𝑟𝑖𝑥 = 𝑑1𝑢1𝑒

�̅�𝑥 + 𝑑2𝑢2𝑒
−�̅�𝑥 

             +𝑑3𝑢3𝑒
𝑖𝑎𝑥 + 𝑑4𝑢4𝑒

−𝑖𝑎𝑥 (16) 

where  

𝑎 = √
1

2𝑒𝑜𝛽1
[(𝛥1𝛥2 − 𝛽1𝛽2 − 𝑒𝑜𝛽3) + 𝜗] 

𝜗 = √(𝛥1𝛥2 − 𝛽1𝛽2 − 𝑒𝑜𝛽3)
2 − 4𝑒𝑜𝛽1𝛽2𝛽3

 (17) 

           𝑏 = √
1

2𝑒𝑜𝛽1
[−(𝛥1𝛥2 − 𝛽1𝛽2 − 𝑒𝑜𝛽3) + 𝜗]

 (18) 

           �̅� = √
1

2𝑒𝑜𝛽1
[(𝛥1𝛥2 − 𝛽1𝛽2 − 𝑒𝑜𝛽3) − ϑ]  

 (19) 

By using the results, (15) and (16) can be written in 

terms of sinusoidal and hyperbolic function 

functions as follows: 

(a) When 0  <   𝜔  ≤ 𝜔𝑐  

{
𝑈(𝑥)
Φ(𝑥)

} = 𝐴1 {
𝑠𝑖𝑛(𝑎𝑥)
𝑔𝑎𝑐𝑜𝑠(𝑎𝑥)

} + 𝐴2 {
𝑐𝑜𝑠(𝑎𝑥)
−𝑔𝑎𝑠𝑖𝑛(𝑎𝑥)

} 

+𝐴3 {
𝑠𝑖𝑛ℎ(𝑏𝑥)
𝑔𝑏𝑐𝑜𝑠ℎ(𝑏𝑥)

} + 𝐴4 {
𝑐𝑜𝑠ℎ(𝑏𝑥)
𝑔𝑏𝑠𝑖𝑛(𝑏𝑥)

} (20) 

(b) When 𝜔  >   𝜔𝑐  

{
𝑈(𝑥)
Φ(𝑥)

} = 𝐴1 {
𝑠𝑖𝑛(𝑎𝑥)
𝑔𝑎𝑐𝑜𝑠(𝑎𝑥)

} + 𝐴2 {
𝑐𝑜𝑠(𝑎𝑥)
−𝑔𝑎𝑠𝑖𝑛(𝑎𝑥)

} 

+𝐴3 {
𝑠𝑖𝑛ℎ(�̅�𝑥)

𝑔𝑏𝑐𝑜𝑠ℎ(�̅�𝑥)
} + 𝐴4 {

𝑐𝑜𝑠ℎ(�̅�𝑥)

−𝑔𝑏𝑠𝑖𝑛(�̅�𝑥)
}

 (21) 

Where

𝑔𝑎 =
1

𝑎𝛥1
(𝛽1𝑎

2 + 𝐾1 − 𝜔
2); 𝑔𝑏 =

1

𝑏𝛥1
(𝛽1𝑏

2 − 𝐾1 + 𝜔
2); 

                𝑔�̅� =
1

�̅�𝛥1
(𝛽1�̅�

2 − 𝐾1 + 𝜔
2) (22) 

The present spatial solutions (20) and (21) are now 

the expression for three frequency ranges 0  <

  𝜔  ≤ 𝜔𝑐 and 𝜔  >   𝜔𝑐 

 

 

3.2 Natural Frequency and Mode Shape 
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Analytical closed forms of natural frequencies and 

mode shapes are to obtained for specific boundary 

condition, our present study is limited to simply 

supported conditions given by  

𝑢(0, 𝑡) = 𝑢(𝐿, 𝑡) = 0;         𝐸𝐼
𝜕𝜙(0,𝑡)

𝜕𝑥
= 𝐸𝐼

𝜕𝜙(𝐿,𝑡)

𝜕𝑥
= 0

(23) 

 We shall considered three frequency ranges 

separately as follows:  

3.2.1  When 𝟎  <   𝝎  <   𝝎𝒄 
 

By substituting eq. (20) into (23) yields a matrix 

equation  

{
 

 
𝑈(0)

Φ′(0)
𝑈(𝐿)

Φ′(𝐿)}
 

 
=[

0 1
0 −𝑎𝑔𝑎

𝑠𝑖𝑛(𝑎𝐿)
−𝑎𝑔𝑎𝑠𝑖𝑛(𝑎𝐿)

𝑐𝑜𝑠(𝑎𝐿)
−𝑎𝑔𝑎𝑐𝑜𝑠(𝑎𝐿)

 

0 1
0 𝑏𝑔𝑏

sinh(𝑏𝐿)

𝑏𝑔𝑏 sinh(𝑏𝐿)
cosh(𝑏𝐿)

𝑏𝑔𝑏 cosh(𝑏𝐿)

]{

𝐴1
𝐴2
𝐴3
𝐴4

} = {

0
0
0
0

} 

           (24) 

For the existence of a non-trivial solution of 𝐴𝑖, (𝑖 = 

1, 2, 3, 4) in (24), the determinant of the matrix of 

eigenvalue problem must vanish. Thus, we obtain  

 

𝐴2 = 𝐴4 = 0   𝑎𝑛𝑑  (𝑎𝑔𝑎 + 𝑏𝑔𝑏)sin(𝑎𝐿)sinh(𝑏𝐿) = 0

(25) 

 Since (𝑎𝑔𝑎 + 𝑏𝑔𝑏) ≠ 0 and sinh(𝑏𝐿) ≠ 0, then if 

 0  <   𝜔  <   𝜔𝑐 we have  

sin(𝑎𝑛𝐿) = 0 (26) 

 From which we obtain  

𝑎𝑛 =
𝑛𝜋

𝐿
      (𝑛 = 1,2,3, . . . , 𝑛𝑎) (27) 

 Therefore, substituting (27) into (17)–(19) yields 

natural frequencies 𝜔𝑛 given as:  

𝜔𝑎(𝑛) = √𝑍(𝑛) − √𝑍(𝑛)2 − 4𝑅(𝑛)   (𝑛 = 1,2,3, … , 𝑛𝑎) 

     (28) 

where

𝑍(𝑛) = [(𝛥2 + 𝐾1) − (
𝑛𝜋

𝐿
)2(𝑒𝑜 + 𝛽1)]

𝑅(𝑛) = [(
𝑛𝜋

𝐿
)2[𝑒𝑜𝛽1(

𝑛𝜋

𝐿
)2 + 𝛥1𝛥2] + 𝛥2(𝐾1 − 𝛽1) − 𝑒𝑜𝐾1]

 

 (29) 

 Next we obtain the mode shapes corresponding to 

the natural frequencies 𝜔𝑎(𝑛) (𝑛 = 1,2, . . . , 𝑛𝑎) by 

determine the values of 𝐴1 and 𝐴3 from (24) in 

following forms:  

𝐴1(𝑛) ≠ 0;      𝐴3(𝑛) = 0 (30) 

Thus, the 𝑛𝑡ℎ mode shape corresponding to 𝜔𝑎(𝑛) 
from (20) is written as  

𝑉𝑎(𝑛)(𝑥) ≡ {
𝑈(𝑥)
Φ(𝑥)

} = 𝐴𝑎(𝑛) {
sin

𝑛𝜋𝑥

𝐿

𝑔𝑎(𝑛)cos
𝑛𝜋𝑥

𝐿

}

(𝑛 = 1,2, . . . , 𝑛𝑎)

  

 (31) 

 where  

𝑔𝑎(𝑛) =
𝐿

𝑛𝜋𝛥1
[𝛽1(

𝑛𝜋

𝐿
)2 + 𝐾1 − 𝜔

2] (32) 

3.2.2  When   𝝎  =   𝝎𝒄 

 

The general solution at   𝜔  =   𝜔𝑐 can be readily 

obtained using equation (18) by allowing 𝜔 to 

approach 𝜔𝑐 i.e when 𝑏 = 0. Therefore, substituting 

𝑏 = 0 and the use of L’Hospital’s rule, eq. (20) 

becomes  

 

{
𝑈(𝑥)
Φ(𝑥)

} = 𝐴1 {
𝑠𝑖𝑛(𝑎𝑐𝑥)
𝑔𝑎𝑐𝑜𝑠(𝑎𝑐𝑥)

} + 𝐴2 {
𝑐𝑜𝑠(𝑎𝑐𝑥)
−𝑔𝑎𝑐𝑠𝑖𝑛(𝑎𝑐𝑥)

} 

         +𝐴3 {
0
𝛽1
𝑜} + 𝐴4 {

1
0
} (33) 

 where  
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𝛽1
𝑜 =

𝛽1

𝛥1
;   𝑎𝑐 = 𝑎(𝑎𝑡  𝜔 = 𝜔𝑐) =

𝑛𝑐𝜋

𝐿
= √

1

𝑒𝑜𝛽1
[(𝑒𝑜𝛽3 − 𝛥1𝛥2)]

𝑎𝑛𝑑

𝑔𝑎𝑐 = 𝑔𝑎(𝑎𝑡  𝜔 = 𝜔𝑐) =
𝐿

𝑛𝜋𝛥1
[𝛽1(

𝑛𝜋

𝐿
)2 + 𝐾1 − 𝛥2]

 

 (34) 

 By applying simply supported boundary condition 

given (23) yields the following eigenvalue 

equations  

{

𝑈(0)

Φ′(0)

𝑈(𝐿)

Φ′(𝐿)

} =  

[
 
 
 
 
0 1 0 1
0 −𝑎𝑐𝑔𝑎𝑐 0 0

sin(𝑎𝑐𝐿) cos(𝑎𝑐𝐿) 0 1

−𝑎𝑐𝑔𝑎𝑐 sin(𝑎𝑐𝐿) −𝑎𝑐𝑔𝑎𝑐 cos(𝑎𝑐𝐿) 0 0]
 
 
 
 

{

𝐴1
𝐴2
𝐴3
𝐴4

} 

 = {

0
0
0
0

}               (35) 

For the existence of a non-trivial solution of 𝐴𝑖, (𝑖 = 

1, 2, 3, 4) in (35), the determinant of the matrix of 

eigenvalue problem must vanish. Thus, we 

conclude that the cutoff frequency 𝜔𝑐 is also a 

natural frequency of a simply supported 

Timoshenko beam. Therefore, we must determine 

the mode shape corresponding to the natural 

frequency 𝜔𝑐. We can see from (34) that 𝑎𝑐 > 0 and 

𝑔𝑎𝑐 > 0. Therefore, from (35), it is easily shown 

that the following should be satisfied:  

 

𝐴2 = 𝐴4 = 0;      𝐴1sin(𝑎𝑐𝐿) = 0    𝑜𝑟    𝐴1sin(𝑛𝑐𝜋) = 0

𝑤ℎ𝑒𝑟𝑒      𝑎𝑐 =
𝑛𝑐𝜋

𝐿

 

 (36) 

Two following two cases shall be considered to 

satisfy (36): 

 Case 1. 𝐴1 = 0, (if 𝑛𝑐 is not an integer). In this 

case, the corresponding mode shape can be derived 

directly from (33) as follows:  

𝑉𝑎(0)(𝑥) ≡ {
𝑈𝑎(0)(𝑥)

Φ𝑎(0)(𝑥)
} = 𝐴𝑎(0) {

0
𝛽1
𝑜} (37) 

 Case 2. 𝐴1 ≠ 0, (if 𝑛𝑐 is an integer). In this case, 

the natural frequency 𝜔𝑐 is equal to the natural 

frequency 𝜔𝑎(𝑛𝑎) of a bending mode shape and they 

become double frequencies given as:  

𝑉𝑎(𝑛𝑎)(𝑥) ≡ {
𝑈(𝑥)

Φ(𝑥)
} = 𝐴𝑎(𝑛𝑎) {

sin
𝑛𝑎𝜋𝑥

𝐿

𝑔𝑎(𝑛𝑎)cos
𝑛𝜋𝑥

𝐿

} 

(𝑚𝑜𝑑𝑒  𝑠ℎ𝑎𝑝𝑒  𝑓𝑜𝑟  𝜔𝑎(𝑛𝑎)) 

𝑉𝑎(0)(𝑥) = 𝐴𝑎(0) {
0
𝛽1
𝑜}    (𝑚𝑜𝑑𝑒  𝑠ℎ𝑎𝑝𝑒  𝑓𝑜𝑟  𝜔𝑐) 

         (38) 

3.2.3  When 𝝎 > 𝝎𝒄 

 

Substituting eq. (21) into (23) yields the following 

matrix equation 

{
 

 
𝑈(0)

Φ′(0)
𝑈(𝐿)

Φ′(𝐿)}
 

 
=[

0 1
0 −𝑎𝑔𝑎

𝑠𝑖𝑛(𝑎𝐿)
−𝑎𝑔𝑎𝑠𝑖𝑛(𝑎𝐿)

𝑐𝑜𝑠(𝑎𝐿)
−𝑎𝑔𝑎𝑐𝑜𝑠(𝑎𝐿)

 

0 1
0 �̅�𝑔�̅�

𝑠𝑖𝑛ℎ(�̅�𝐿)

�̅�𝑔�̅�𝑠𝑖𝑛ℎ(�̅�𝐿)

𝑐𝑜𝑠ℎ(�̅�𝐿)

�̅�𝑔�̅�𝑐𝑜𝑠ℎ(�̅�𝐿)]
 
 
 

{

𝐴1
𝐴2
𝐴3
𝐴4

} = {

0
0
0
0

}

           (39) 

Using the same procedure as in the previous section, 

we have 

𝐴2 = 𝐴4 = 0  𝑎𝑛𝑑(𝑎𝑔𝑎 + �̅�𝑔�̅�) sin(𝑎𝐿) sin(�̅�𝐿) = 0 

 (40) 

Since (𝑎𝑔𝑎 + �̅�𝑔�̅�) ≠ 0 and �̅� > 0, then if 𝜔 > 𝜔𝑐 
we have the following two conditions  
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sin(𝑎𝑛𝐿) = 0  𝑜𝑟  sin(�̅�𝐿) = 0 (41) 

 From which we obtain  

    𝑎𝑛 =
𝑛𝜋

𝐿
    (𝑛 = 𝑛𝑎 + 1, 𝑛𝑎 + 2, . . . , ∞) (42) 

Therefore, substituting (27) into (17) – (19) yields 

natural frequencies 𝜔𝑛 given as:  

𝜔𝑎(𝑛) = √𝑍(𝑛) − √𝑍(𝑛)2 − 4𝑅(𝑛)     

        (𝑛 = 𝑛𝑎 + 1, 𝑛𝑎 + 2, . . . , ∞) (43) 

Thus, the 𝑛𝑡ℎ mode shape corresponding to 𝜔𝑎(𝑛) 
from (21) is written as  

𝑉𝑎(𝑛)(𝑥) ≡ {
𝑈(𝑥)
Φ(𝑥)

} = 𝐴𝑎(𝑛) {
sin

𝑛𝜋𝑥

𝐿

𝑔𝑎(𝑛)cos
𝑛𝜋𝑥

𝐿

}

    (𝑛 = 𝑛𝑎 + 1, 𝑛𝑎 + 2, . . . , ∞)

 (44) 

and  

   �̅�𝑚 =
𝑚𝜋

𝐿
    (𝑚 = 1,2, . . . , ∞) (45) 

Therefore, substituting (27) into (17)–(19) yields 

natural frequencies 𝜔𝑛 given as:  

 

𝜔�̅�(𝑚) = √𝑍(𝑚) − √𝑍(𝑚)
2 − 4𝑅(𝑚)    (𝜔�̅�(𝑚) > 𝜔𝑐) 

(46) 

Where 𝑍(𝑚) and 𝑅(𝑚) are defined in (29) by 

replacing 𝑛 with 𝑚 Thus, the 𝑛𝑡ℎ mode shape 

corresponding to 𝜔�̅�(𝑚) are obtained from (21) as  

 

𝑉�̅�(𝑚)(𝑥) ≡ {
𝑈�̅�(𝑚)(𝑥)

Φ�̅�(𝑚)(𝑥)
} = 𝐴�̅�(𝑚) {

sin
𝑚𝜋𝑥

𝐿

𝑔𝑏(𝑛)cos
𝑚𝜋𝑥

𝐿

}

    (𝑚 = 1,2, . . . , ∞)
 (47) 

 where  

𝑔𝑏(𝑚) =
𝐿

𝑚𝜋𝛥1
[𝛽1(

𝑚𝜋

𝐿
)2 + 𝐾1 − 𝜔

2] (48) 

Thus, we need to consider the following types of 

mode shapes for the transverse vibration of the 

simply supported prestressed thick beam on bi-

parametric foundation.  

 

𝑉𝑎(𝑛)(𝑥) = 𝐴𝑎(𝑛) {
sin

𝑛𝜋𝑥

𝐿

𝑔𝑎(𝑛)cos
𝑛𝜋𝑥

𝐿

}    (𝑚𝑜𝑑𝑒  𝑠ℎ𝑎𝑝𝑒  𝑓𝑜𝑟  𝜔𝑎(𝑛))

𝑉𝑎(0)(𝑥) = 𝐴𝑎(0) {
0
𝛽1
𝑜}    (𝑝𝑢𝑟𝑒  𝑠ℎ𝑒𝑎𝑟  𝑚𝑜𝑑𝑒  𝑠ℎ𝑎𝑝𝑒  𝑓𝑜𝑟  𝜔𝑐)

𝑉�̅�(𝑚)(𝑥) = 𝐴�̅�(𝑚) {
sin

𝑛𝜋𝑥

𝐿

𝑔𝑏(𝑛)cos
𝑛𝜋𝑥

𝐿

}    (𝑚𝑜𝑑𝑒  𝑠ℎ𝑎𝑝𝑒  𝑓𝑜𝑟  𝜔𝑏(𝑛))

 

 (49) 

3.3 The Orthogonality Conditions for the 

Model 

In order to obtain the forced response of thick beam, 

we use the method of eigenfunction expansion. 

Therefore, the orthogonality conditions of the 

eigenfunctions have to be established for the beam 

model discussed so far. Thus, the spatial equations 

of the homogeneous problem (9) can be written as 

follow: 

 𝐾(𝑉𝑛) = 𝜔𝑛
2𝑀(𝑉𝑛) (50) 

where 𝑉𝑛 denotes the 𝑛𝑡ℎ eigenfunction for the 

vector of [𝑈𝑛    Φ𝑛]
𝑇 of the beam model and 

corresponds to the natural frequency 𝜔𝑛
2 uniquely to 

within an arbitrary constant. The operators K and M 

are self-adjoint (with corresponding boundary 

conditions) if 

∫
𝐿

0
[𝑉𝑛

𝑇𝐾(𝑉𝑚) − 𝑉𝑚
𝑇𝐾(𝑉𝑛)]𝑑𝑥 = 0

𝑎𝑛𝑑

∫
𝐿

0
[𝑉𝑛

𝑇𝑀(𝑉𝑚) − 𝑉𝑚
𝑇𝑀(𝑉𝑛)]𝑑𝑥 = 0

 (51) 

Since the second condition in (51) is automatically 

satisfied for the model. Therefore, using equation 

(50), we can write the first condition in (51) as 

(𝜔𝑚
2 − 𝜔𝑛

2) ∫
𝐿

0
𝑉𝑛
𝑇𝑀(𝑉𝑚) = 0 (52) 

However, eigenvalues are unique to the 

eigenfunctions, 𝜔𝑚
2 ≠ 𝜔𝑛

2 for (𝑚 ≠ 𝑛). In order for 
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the above equation to be zero, the integral has to be 

zero, i.e  

∫
𝐿

0

𝑉𝑛
𝑇𝑀(𝑉𝑚) = 0    (𝑓𝑜𝑟    𝑚 ≠ 𝑛) 

 (53) 

 

This is the orthogonality condition for the 

eigenfunctions. When 𝑚 = 𝑛, we normalize the 

eigenfunctions by setting the integral equal to one, 

∫
𝐿

0

𝑉𝑛
𝑇𝑀(𝑉𝑚) = 1    (𝑓𝑜𝑟    𝑛 = 1,2,3,… ) 

 (54) 

Combining equations (53) and (54), we can write 

∫
𝐿

0

𝑉𝑛
𝑇𝑀(𝑉𝑚) = 𝛿𝑚𝑛 

 (55) 

where 𝛿𝑚𝑛 is the Kronecker delta. 

For this model, the corresponding boundary 

condition for the self-adjoint operator K are found 

to be 

𝜑𝐺𝐴 [𝑈𝑛 (
𝑑𝑈𝑚
𝑑𝑥

− Φ𝑚) − 𝑈𝑚
𝑑𝑈𝑛
𝑑𝑥

− Φ𝑛] |𝑜
𝐿  

                                    +[Φ𝑛
𝑑Φ𝑚

𝑑𝑥
−Φ𝑚

𝑑Φ𝑛

𝑑𝑥
] |𝑜
𝐿  (56) 

Then, substituting (49) into (54), we derive the 

coefficients of each normal mode shape as follows: 

𝐴𝑎(𝑛) = √
2

𝐿(1 + 𝑔𝑎(𝑛)
2 )

;    𝐴�̅�(𝑚) = √
2

𝐿(1 + 𝑔𝑏(𝑛)
2 )

;     

                                      𝐴𝑎(0) =
1

𝛽1
𝑜√𝐿

 (57) 

3.4 Modal-Asymptotic Analysis of Forced 

Vibration of the Model 

 

The forced vibration of (1) can be represented by 

using the mode summation given as  

𝑣(𝑥, 𝑡) = ∑

∞

𝑛=1

𝑉𝑎(𝑛)(𝑥)𝑦𝑎(𝑛)(𝑡) 

+∑

∞

𝑛=1

𝑉𝑏(𝑛)(𝑥)𝑦𝑏(𝑛)(𝑡) + 𝑉𝑎(0)(𝑥)𝑦𝑎(0)(𝑡) 

 (58) 

where v(x,t) stand for [𝑢(𝑥, 𝑡)    𝜙(𝑥, 𝑡)]𝑇 in this 

model while 𝑦𝑎(𝑛)(𝑡), 𝑦𝑏(𝑛)(𝑡), and 𝑦𝑎(0)(𝑡) are the 

generalized time-dependent coordinates to be 

determined in order to satisfy initial boundary 

condition. Therefore, substituting (58) into (1) and 

applying the orthogonality conditions of the normal 

mode shapes yield the following equations  

𝑑2𝑦𝑎(𝑛)

𝑑𝑡2
+ 𝜔𝑎(𝑛)

2 𝑦𝑎(𝑛) = 𝑓𝑎(𝑛);

    
𝑑2𝑦𝑏(𝑛)

𝑑𝑡2
+ 𝜔𝑏(𝑛)

2 𝑦𝑏(𝑛) = 𝑓𝑏(𝑛);

    
𝑑2𝑦𝑎(0)

𝑑𝑡2
+ 𝜔𝑎(0)

2 𝑦𝑎(𝑛) = 𝑓𝑎(0)

(𝑛 = 1,2,3, … )

 

 (59) 

 where the generalized forces are defined by  

𝑓𝑎(𝑛) = ∫
𝐿

0

𝑉𝑎(𝑛)(𝑥)𝑓(𝑥, 𝑡)𝑑𝑥;    

𝑓𝑏(𝑛) = ∫
𝐿

0
𝑉𝑏(𝑛)(𝑥)𝑓(𝑥, 𝑡)𝑑𝑥;    𝑓𝑎(0) = 0

 (60) 

where 𝑓(𝑥, 𝑡) is the distributed load parameter 

given in (2). For this problem, the distributed load 

moving on the beam has mass commensurable with 

the mass of the beam. Consequently, the load inertia 

is not negligible but significantly affects the 

behavior of the dynamical system. Thus, the 

distributed load 𝐹(𝑥, 𝑡) takes the form  
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𝐹(𝑥, 𝑡) = 𝑃𝑜𝐻[𝑥 − 𝑐𝑡] [1 −
1

𝑔
(
𝜕2

𝜕𝑡2
+ 2𝑐

𝜕2

𝜕𝑥𝜕𝑡
 

                                +𝑐2
𝜕2

𝜕𝑥2
) 𝑢(𝑥, 𝑡)] (61) 

where 𝑃𝑜 is the magnitude of the transverse 

distributed force, 𝑔 is the acceleration due to 

gravity, 𝑐 is the initial velocity, 𝐻[𝑥 − 𝑐𝑡] is the 

Heaviside function which is a typical engineering 

function made to measure engineering applications 

involving functions that are either "on" of "off". 

Therefore, incorporating equations (60)–(61) into 

(59), thereafter, evaluating the integrals with the 

use of Fourier sine series representation of the 

Heaviside function, yields the following equations 

 

𝑑2𝑦𝑎(𝑛)

𝑑𝑡2
+𝜔𝑎(𝑛)

2 𝑦𝑎(𝑛)(𝑡) + 휀𝑎{[𝐿𝜓11(𝑚, 𝑘) 

+
𝐿

𝜋
∑

∞

𝑛=0

cos(2𝑛 + 1)𝜋𝑐𝑡

2𝑛 + 1
𝜓12(𝑚, 𝑛) 

−
𝐿

𝜋
∑

∞

𝑛=0

sin(2𝑛 + 1)𝜋𝑐𝑡

2𝑛 + 1
𝜓13(𝑚, 𝑛)]�̈�𝑎(𝑛)(𝑡) 

+2𝑐[𝐿𝜓21(𝑚, 𝑛) +
𝐿

𝜋
∑

∞

𝑛=0

cos(2𝑛 + 1) 𝜋𝑐𝑡

2𝑛 + 1
𝜓22(𝑚, 𝑛) 

−
𝐿

𝜋
∑

∞

𝑛=0

sin(2𝑛 + 1)𝜋𝑐𝑡

2𝑛 + 1
𝜓23(𝑚, 𝑛)]�̇�𝑎(𝑛)(𝑡) 

+𝑐2[𝐿𝜓31(𝑚, 𝑛) +
𝐿

𝜋
∑

∞

𝑛=0

cos(2𝑛 + 1)𝜋𝑐𝑡

2𝑛 + 1
𝜓32(𝑚, 𝑛) 

−
𝐿

𝜋
∑

∞

𝑛=0

sin(2𝑛 + 1)𝜋𝑐𝑡

2𝑛 + 1
𝜓33(𝑚, 𝑛)]𝑦𝑎(𝑛)(𝑡)} 

                                  = 𝑃𝑎(𝑛)[cos𝜃𝑛𝑡 + 𝑅𝑛]; (62) 

𝑑2𝑦𝑏(𝑛)

𝑑𝑡2
+𝜔𝑏(𝑛)

2 𝑦𝑏(𝑛)(𝑡) + 휀𝑏{[𝐿𝜓11(𝑚, 𝑘) 

+
𝐿

𝜋
∑

∞

𝑛=0

cos(2𝑛 + 1)𝜋𝑐𝑡

2𝑛 + 1
𝜓12(𝑚, 𝑛) 

−
𝐿

𝜋
∑

∞

𝑛=0

sin(2𝑛 + 1)𝜋𝑐𝑡

2𝑛 + 1
𝜓13(𝑚, 𝑛)]�̈�𝑏(𝑛)(𝑡) 

+2𝑐[𝐿𝜓21(𝑚, 𝑛) +
𝐿

𝜋
∑

∞

𝑛=0

cos(2𝑛 + 1) 𝜋𝑐𝑡

2𝑛 + 1
𝜓22(𝑚, 𝑛) 

−
𝐿

𝜋
∑

∞

𝑛=0

sin(2𝑛 + 1)𝜋𝑐𝑡

2𝑛 + 1
𝜓23(𝑚, 𝑛)]�̇�𝑏(𝑛)(𝑡) 

+𝑐2[𝐿𝜓31(𝑚, 𝑛) +
𝐿

𝜋
∑

∞

𝑛=0

cos(2𝑛 + 1)𝜋𝑐𝑡

2𝑛 + 1
𝜓32(𝑚, 𝑛) 

−
𝐿

𝜋
∑

∞

𝑛=0

sin(2𝑛 + 1)𝜋𝑐𝑡

2𝑛 + 1
𝜓33(𝑚, 𝑛)]𝑦𝑏(𝑛)(𝑡)} 

                                  = 𝑃𝑏(𝑛)[cos𝜃𝑛𝑡 + 𝑅𝑛]; (63) 

and  

           
𝑑2𝑦𝑎(0)

𝑑𝑡2
+𝜔𝑎(0)

2 𝑦𝑎(𝑛) = 𝑃𝑐 (64) 

휀𝑎 =
𝐴𝑎(𝑛)𝑃𝑜

𝜌𝑔𝐴𝐿
;    휀𝑏 =

𝐴𝑏(𝑛)𝑃𝑜

𝜌𝑔𝐴𝐿
;    𝑃𝑎(𝑛) =

𝐴𝑎(𝑛)𝑃𝑜

𝜌𝐴𝐿
;     

𝑃𝑏(𝑛) =
𝐴𝑏(𝑛)𝑃𝑜

𝜌𝐴𝐿
;    𝑃𝑐 =

𝐴𝑎(0)

𝜌𝐴
;   𝜃𝑛 =

𝑛𝜋𝑐

𝐿
;     

𝑅𝑛 = −(−1)
𝑛;    𝜓11 =

𝐿

2
;  

𝜓12 = ∫
𝐿

0

sin(2𝑛 + 1) sin
𝑛𝜋𝑥

𝐿
sin

𝑚𝜋𝑥

𝐿
; 

𝜓13 = ∫
𝐿

0

sin(2𝑛 + 1) sin
𝑛𝜋𝑥

𝐿
sin

𝑚𝜋𝑥

𝐿
; 

𝜓21 =
𝑛𝜋

𝐿
∫
𝐿

0

cos
𝑛𝜋𝑥

𝐿
sin

𝑚𝜋𝑥

𝐿
; 

𝜓22 =
𝑛𝜋

𝐿
∫
𝐿

0

sin(2𝑛 + 1) cos
𝑛𝜋𝑥

𝐿
sin

𝑚𝜋𝑥

𝐿
; 

𝜓23 =
𝑛𝜋

𝐿
∫
𝐿

0

cos(2𝑛 + 1) cos
𝑛𝜋𝑥

𝐿
sin

𝑚𝜋𝑥

𝐿
; 

𝜓31 = −(
𝑛𝜋

𝐿
)2𝜓11;     𝜓32 = −(

𝑛𝜋

𝐿
)2𝜓12;     

𝜓33 = −(
𝑛𝜋

𝐿
)2𝜓13 
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   (65) 

By considering (62) – (63), we can derive the 

vibration responses of the beam for cases 

Case 1: When the beam is subjected to a load of 

negligible inertia, i.e. by setting 휀𝑎 and 휀𝑏 to zero. 

This is termed moving force problem. 

Case 2: When the beam is subjected to a load of not 

negligible inertia, i.e. when 휀𝑎 and 휀𝑏 are greater 

than zero. This is termed moving mass problem. 

 However, in this study, we shall focus on the 

analysis of forced vibration of the model on case 2 

 

3.4.1 Modal-Asymptotic Analysis of Forced 

Vibration of the Model when the Beam is 

Traversed by Moving Mass 
 

In this section, the solution to the entire equations 

(62) – (64) are sought when no terms of the equation 

or any of the equation is neglected. However, there 

are have been report in the Literature in which the 

external transverse force 𝑓(𝑥, 𝑡) and arbitrary initial 

conditions were fully considered by taking into 

account the pure shear mode shape V 𝒂(𝟎) to the best 

knowledge of the author. Thus, the equations (62) – 

(63) takes the form  

�̈�𝑎(𝑛)(𝑡) +
2휀𝑎𝑐𝑄2(𝑚, 𝑛)

1 + 휀𝑎𝑄1(𝑚, 𝑛)
�̇�𝑎(𝑛)(𝑡) 

+
𝜔𝑎(𝑛)
2 + 휀𝑎𝑐

2𝑄2(𝑚, 𝑛)

1 + 휀𝑎𝑄1(𝑚, 𝑛)
𝑦𝑎(𝑛)(𝑡)

=
𝑃𝑎(𝑛)[cos𝜃𝑘𝑡 + 𝑅𝑛]

1 + 휀𝑎𝑄1(𝑚, 𝑛)
 

 (66) 

�̈�𝑏(𝑛)(𝑡) +
2휀𝑏𝑐𝑄2(𝑚, 𝑛)

1 + 휀𝑏𝑄1(𝑚, 𝑛)
�̇�𝑏(𝑛)(𝑡) 

+
𝜔𝑏(𝑛)
2 + 휀𝑏𝑐

2𝑄2(𝑚, 𝑛)

1 + 휀𝑏𝑄1(𝑚, 𝑛)
𝑦𝑏(𝑛)(𝑡)

=
𝑃𝑏(𝑛)[cos𝜃𝑘𝑡 + 𝑅𝑛]

1 + 휀𝑏𝑄1(𝑚, 𝑛)
 

 (67) 

 where  

𝑄1(𝑚, 𝑛) = [𝐿𝜓11(𝑚, 𝑛) + 

𝐿

𝜋
∑

∞

𝑛=0

cos(2𝑛 + 1)𝜋𝑐𝑡

2𝑛 + 1
𝜓12(𝑚, 𝑛 

−
𝐿

𝜋
∑

∞

𝑛=0

sin(2𝑛 + 1)𝜋𝑐𝑡

2𝑛 + 1
𝜓13(𝑚, 𝑛)] 

𝑄2(𝑚, 𝑛) = [𝐿𝜓21(𝑚, 𝑛) + 

𝐿

𝜋
∑

∞

𝑛=0

cos(2𝑛 + 1)𝜋𝑐𝑡

2𝑛 + 1
𝜓22(𝑚, 𝑛 

−
𝐿

𝜋
∑

∞

𝑛=0

sin(2𝑛 + 1)𝜋𝑐𝑡

2𝑛 + 1
𝜓23(𝑚, 𝑛)] 

𝑄3(𝑚, 𝑛) = [𝐿𝜓31(𝑚, 𝑛) + 

𝐿

𝜋
∑

∞

𝑛=0

cos(2𝑛 + 1)𝜋𝑐𝑡

2𝑛 + 1
𝜓32(𝑚, 𝑛 

−
𝐿

𝜋
∑

∞

𝑛=0

sin(2𝑛 + 1)𝜋𝑐𝑡

2𝑛 + 1
𝜓33(𝑚, 𝑛)] 

 (68) 

In order to solve the problem, an analytical 

approximation method called Asymptotic method 

due to Strubble which is often used in treating 

oscillatory system will be use. By this technique, 

one seeks the modified frequency corresponding to 

the frequency of the free system due to the presence 

of the effect of the moving mass. Following the 

procedures extensively discussed in [14], the 

homogeneous part of equations (66) – (67) are 

simplified to take the form: 

�̈�𝑎(𝑛)(𝑡) + 𝜔𝑚𝑎
2 𝑦𝑎(𝑛) = 0 (69) 

  

�̈�𝑏(𝑛)(𝑡) + 𝜔𝑚𝑏
2 𝑦𝑏(𝑛) = 0 (70) 

where  
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𝜔𝑚𝑎 = 𝜔𝑎(𝑛) [1 −
𝜖𝑎𝐿

8
(𝜓11(𝑚, 𝑛) +

𝑐2𝑛2𝜋2𝜓11(𝑚,𝑛)

𝜔𝑎(𝑛)
2 𝐿2

)]

𝑎𝑛𝑑      

 

𝜔𝑚𝑏 = 𝜔𝑏(𝑛)[1 −
𝜖𝑏𝐿

8
(𝜓11(𝑚, 𝑛) +

𝑐2𝑛2𝜋2𝜓11(𝑚,𝑛)

𝜔𝑏(𝑛)
2 𝐿2

)]

 (71) 

are called modified natural frequency representing 

the frequency of the system due to the presence of 

the moving mass. Thus, the entire equations (62) – 

(64) reduces to 

�̈�𝑎(𝑛)(𝑡) + 𝜔𝑚𝑎
2 𝑦𝑎(𝑛) = 𝑊𝑎(𝑡) (72) 

             �̈�𝑏(𝑛)(𝑡) + 𝜔𝑚𝑏
2 𝑦𝑏(𝑛) = 𝑊𝑏(𝑡) (73) 

             �̈�𝑎(0)(𝑡) + 𝜔𝑐
2𝑦𝑎(0) = 𝑃𝑐 (74) 

 where  

𝑊𝑎(𝑡) = 𝑃𝑎(𝑛)[cos𝜃𝑛𝑡 + 𝑅𝑛];  

𝑊𝑏(𝑡) = 𝑃𝑏(𝑛)[cos𝜃𝑛𝑡 + 𝑅𝑛]; (75) 

Therefore, solving (72) – (74) using the method of 

Laplace transforms in conjunction with convolution 

theory for unknown generalized coordinates 𝑦𝑎(𝑛), 

𝑦𝑏(𝑛) and 𝑦𝑎(0), and then substituted the results into 

(58) to obtain the vibration responses as follows:  

𝑣(𝑥, 𝑡) = ∑

∞

𝑛=1

𝑉𝑎(𝑛)(𝑥)

𝜔𝑚𝑎
[∫

𝑡

0

𝑊𝑎(𝑡)sin𝜔𝑚𝑎(𝑡 − 𝜏)𝑑𝜏 

+𝑦𝑎(𝑛)(0)cos𝜔𝑚𝑎𝑡 +
1

𝜔𝑚𝑎
�̇�𝑎(𝑛)(0)] 

+∑

∞

𝑛=1

𝑉𝑏(𝑛)(𝑥)

𝜔𝑚𝑏
[∫

𝑡

0

𝑊𝑏(𝑡)sin𝜔𝑚𝑏(𝑡 − 𝜏)𝑑𝜏 

+𝑦𝑏(𝑛)(0)cos𝜔𝑚𝑏𝑡 +
1

𝜔𝑚𝑎
�̇�𝑏(𝑛)(0)] 

+∑

∞

𝑛=1

𝑉𝑎(0)(𝑥)

𝜔𝑐
[∫

𝑡

0

𝑃𝑐(𝑡)sin𝜔𝑐(𝑡 − 𝜏)𝑑𝜏 

+𝑦𝑎(0)(0)cos𝜔𝑚𝑎𝑡 +
1

𝜔𝑐
�̇�𝑎(0)(0)] 

 (76) 

Thus, equation (76) represent the solution to forced 

vibration of prestressed thick beam of length 𝐿 on 

bi-parametric foundation subjected to moving 

loads using Modal-Asymptotic Analysis. It is also 

clearly shows that the shear mode shape 𝑉𝑎(0)(𝑥) 

must be considered when a thick beam is subjected 

to moving loads as well as to initial rotation 

𝜙(𝑥, 0) and angular velocity 
𝜕𝜙(𝑥,0)

𝜕𝑡
. 

 

4 Numerical Investigation 
In order to investigate the dynamic response of the 

present study, we reconsidered the uniform simply 

supported Timoshenko beam that was previously 

employed by Esmalizadeh and Ghorashi [7]. The 

geometric and material properties data of the beam are 

as follows: length 𝐿 = 27.374m; area moment of inertia 

𝐼 = 5.71× 10−7𝑚4; cross sectional area 𝐴 = 3.3183 ×

10−5; Young’s modulus 𝐸 = 2.02 ×   1011 𝑁𝑚2; shear 

modulus 𝐺 = 7.7 ×   1010𝑁𝑚−2, mass density 𝜌 =

15267𝑘𝑔/𝑚3, and shear correction factor taken as 𝜑  =
0.7. For the analyses of forced vibrations, we assumed 

that the mass 𝑀𝑜 = 454.08𝑘𝑔 and 𝑔 = 9.8𝑚𝑠−2. We 

also assumed that the beam has null initial conditions. 

 

4.1    Model Verification 

In this subsection, we aim to verify the accuracy of the 

present method MAA. Thus, the eigenfrequency and the 

dynamic response of the simply supported (𝑆𝑆) beam is 

computed and compared to the existing literature. 

Following the work of (Kim et al., 2017), we compare 

the natural frequencies and mode shape of the present 

work and (Kim et al., 2017) . 

It is seen from Table 1 that regardless the values of axial 

force and foundation stiffness, the natural frequencies 

𝜔𝑎(𝑛) and the corresponding mode shape parameters 𝑔𝑎 

of the simply supported beam on the elastic foundation 

in the present work is in good agreement with that 

reported by (Kim et al., 2017), who computed the 

frequency parameter without considering both axial 

force and foundation stiffness. 
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Table  1: Frequency parameter of SS thick beam on an elastic foundation at various values of the Mode number (n) 

      Mode(n) at 

    (𝐾𝑜 = 0,𝑁𝑜 = 0) 

𝑔𝑎  

present 

𝜔𝑎(𝑛)  

present 

        Kim et al. 

       𝑔𝑎 (2017) 

𝜔𝑎(𝑛) 

(2017)   

1 0.70   6.29  0.72   6.29  

2 1.21   25.19  1.44   25.14  

3 1.51   56.84  2.15   56.41  

4 1.93   101.43  2.86   99.92  

5 3.28   159.28  3.53   155.39  

      Mode(n) at 

(𝐾𝑜 = 0,𝑁𝑜 = 400) 

𝑔𝑎  

present 

𝜔𝑎(𝑛)  

present 

           Kim et al. 

           𝑔𝑎 (2017) 

𝜔𝑎(𝑛) 

(2017)   

1 0.70   5.40  0.72   6.29  

2 1.21   24.35  1.44   25.14  

3 1.51   56.01  2.15   56.41  

4 1.93   100.61  2.86   99.92  

5 3.28   158.46  3.53   155.39  

       Mode(n) at 

(𝐾𝑜 = 400,𝑁𝑜 = 0) 

𝑔𝑎  

present 

𝜔𝑎(𝑛)  

present 

Kim et al. 

𝑔𝑎 (2017) 

𝜔𝑎(𝑛)  

(2017) 

1 0.70   6.23  0.72   6.29  

2 1.21   25.14  1.44   25.14  

3 1.51   56.79  2.15   56.41  

4 1.93   101.38  2.86   99.92  

5 3.28   159.23  3.53   155.39  
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      Figure 1a      Figure 1b 

 

  

Figure 1c          Figure 1d 

Figure 1. Dynamic responses at x/L = 0.25 of a simply supported beam subjected to a distributed masses applied at x/L = 0.5 for 

the case of constant velocity c = 0.25vc when KN = 4 × 104, Kw = 4 × 104 and excitation frequency α = 6.283: (a) transverse 

displacement (u); (b) total slope (u′); (c) slope due to bending (ϕ); (d) shear angle (Ψ) 
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Figure 2a        Figure 2b 

  

Figure 2c          Figure 2d 

Figure. 2. Effect of axial force on the dynamic response of the simply supported beam without foundation support for the case of 

constant velocity c = 0.0425vc and different excitation frequencies: (a) α = 0; (b) α = 40; (c) α = 80; (d) α = 120 
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Figure 3a          Figure 3b 

  

Figure 3c          Figure 3d 

Figure 3. Effect of axial force on the dynamic response of the simply supported beam with foundation stiffness Kw = 4 × 104, and 

foundation modulus Kg = 4 × 104 support for the case of constant velocity c = 0.0425vc and different excitation frequencies:  

(a) α = 0; (b) α = 40; (c) α = 80; (d) α = 120 
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Figure 4a          Figure 4b 

  

Figure 4c          Figure 4d 

Figure 4. Effect of moving velocity on the dynamic response of the prestressed simply supported beam resting on an elastic 

foundation with different excitation frequencies: (a) α = 20; (b) α = 40; (c) α = 60; (d) α = 80 
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3.2 Discussions 

Figure 1 shows the dynamic responses predicted at 

x/L = 0.25, when the Timoshenko beam is subjected 

to a distributed force at its middle point x/L = 0.5. The 

responses are the transverse displacement u(0.25L, t), 

the total slope u′(0.25L, t), the slope due to bending 

ϕ(0.25L, t) and the shear angle due to transverse shear 

force Ψ(0.25L, t) = u′(0.25L, t) − ϕ(0.25L, t).  

Figure 1 shows the deformed shape at four different 

values of axial force (KN = 0, 4× 105, 4× 106, 4× 108) 

for the dynamic responses. As seen from the figures, 

the dynamic deflection of the beam decreasing 

as the value of axial force is increasing. 

 

The effect of axial force on the dynamic response of 

the simply supported Timoshenko beam without 

foundation support for the case of constant velocity c 

= 0.0425vc, (where vc is the lowest critical speed 

given as vc = 2f1L and f1 is the first natural frequency 

in Hz.) and different excitation frequencies is 

depicted in figure 2. In figures (2a) and (2b), in the 

case of moving load α = 0, and in the case of moving 

harmonic load α = 40 rad/s. It is noted for the two 

excitation frequencies that the dynamic deflection of 

the beams firstly decreases as the values of axial force 

increases but when the axial is very high say KN = 4 

× 108, the dynamic deflection then increases while in 

figures (2c) and (2d) where the excitation frequencies 

are much higher, the dynamic deflection of continue 

decreases as the value of axial force increases.  

 

In order to investigate the effect of the moving 

velocity on the dynamic response of the beams, the 

values of the axial force, foundation modulus and 

foundation stiffness are kept constant, say KN = 4 × 

103, Kg = 4× 104 and Kw = 4× 104. The numerical 

computation is performed with four various values of 

the constant velocity, c = 0.25vc, 0.5 vc, vc, 1.5 vc m/s, 

and at four different excitation frequencies α = 20, 40, 

60, 80 rad/s. 

 

Figure 4 shows the effect of the moving velocity on 

the dynamic response of the prestressed simply 

supported beam resting on a one-parameter elastic 

foundation. As seen in figure (4a), when the 

excitation frequency α is 20 rad/s, the dynamic 

deflection of the beams firstly increases with an 

increment in the moving velocity, it then decreases. 

Regardless the value of the excitation frequency, the 

dynamic deflection of the beam is at the pick level 

when the moving velocity c = vc. In order words, at a 

given foundation stiffness and axial force, there is a 

critical velocity at which the dynamic deflection 

reaches a maximum value for any case of excitation 

frequency at a given moving velocity. 

 

 
 

 

4. Conclusions 

The problem of the dynamic response of 

prestressed thick beam subjected to moving 

loads using modal-asymptotic analysis (MAA) 

has been examined. The dynamic response of the 

simply supported beams for moving mass case has 

been computed at different values of axial force, 

foundation stiffness, moving velocity and excitation 

frequency. The analyses exhibited the following 

features:  

 The deformed shapes of thick beam strongly 

depend on the speeds of the moving load. 

There are critical speeds at which the 

dynamic system reaches a pick value, and 

this speed is called critical speed which is 

affected by the foundation stiffness and the 

excitation frequency. 

 The effect of the moving velocity depends 

on the excitation frequency and this affect 

the dynamic deflection of the beam. 

 A set of natural frequencies and mode 

shapes are presented in closed forms for 

frequency range 0 < ω ≤ ωc, where ωc is the 

cutoff frequency. 

 As the value values of axial force 

parameters increases, the transverse 

deflection of the beam model decreased. 

This is strongly depending on the excitation 

frequency. 
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