AJOSR Vol. 3, Issue 2. 2021 Jimoh (2021)

Original Research
Volume 3, Issue 2, pp 28-46, December 2021

ACHIEVERS JOURNAL, QF SCIENTIFIC RESEAREH)
Opecn. Access Publications of Ackievers University, Owa

Available Online at www.achieversjournalofscience.org

On Modal-Asymptotic Analysis to Prestressed Thick Beam
on Bi-Parametric Foundation Subjected to Moving Loads
S.A. Jimoh
Department oMathemati@l SciencesAchieversUniversityOwo, OndoState.

*E-mail; imohsaauo@agmail.com

Submitted:October25, 2021 Revised December 12021 Accepted December 62021 PublishedDecember13, 2021
ABSTRACT

In this paper, the dynamic response of prestressed thick beam subjected to moving loads using moda
asymptotic analysis (MAA) is investigated. The main objective of this work is to obtain an analytical
closedform solution to this class of enamical problems. To use MAA, accurate information is
needed on the natur al frequencies, mode shape:
Asymptotic technique a prior. A thorough literature survey reveals that the method has not been
reported n the existing literature, even for simple Timoshenko beams. Thus, we present complete
information on how to use the MAA to derive the forced vibration responses of a simply supported
Timoshenko beam subjected to moving loads. The effects of prestresslatban parameters, and
moving velocity on the dynamic characteristics of the beams are studied and described in detail. Tc
validate the accuracy of this method, we compare the frequency parameter with the existing literature
which is shown to compare fakably.

KEYWORDS: ModalAsymptotic PrestressBi-parametric foundatignmoving loads Timoshenko beam.

1.

Introduction structural dynamics is important in the design
and retrofit of structures to withstand severe
dynamic loading from environmental forces
like earthquakes, stng wind, hurricanes, or

moving loads like cars and pedestrians in the
case of bridges. With the persistent
development of science and technology,
extensive application of higperformance

materials, increasingly enlargement of the

Forced vibration of elastic bodies (stretched
string, springmass system, rods, etdias been
extensively studied by several auth@Psescott
and Inglis, 1934;Muchnikov,1953; Kenny,
1954; Stanisic, 1968; Sadiku and Leipholz,
1989 Awodola and Omolofg2018 in many
fields, from structural to mechanical to

aerospace engineering for more than a decade.
Aerospace engineers must understand
dynamics to stimulate space vehicles and
airplanes, while mechanical engineers must
understand dynamics to isolate or cotttioe
vibration of machinery. In civil engineering and
structural engineering, an understanding of
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bridge span, and contious increase in train
speed and vehicle load, the problem of bridge
vibration becomes more prominent. So far and
during these years, many researchers have
conducted different studies in this field. When
moving loads are applied to a structure,
dynamic deféctions and stresses may become
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considerably higher than those induced by
static loads. For this reason, various structures
subjected to moving loads have been invested.
Examples of moving loads include trains, cars,
trucks, cranes, and pedestrians walkiog

running across bridges. Structural systems on

Jimoh (2021)

method(Esmailzadeh and Ghorasii997)

The analytical solution closefbrm solution
for a moving load problem using MAA can be
obtained when the information regarding
natural frequencies, mode shapes, and the
orthogonality properties of the mode shapes are

the other hand are usually modeled as beams derived. Many researchers have develdp

and plates. These may be elastic, inelastic, or
viscoelastic. A simple example of these
structural systems/members are bridges,
railways, rail, decking slabs, elated roadways

to moving vehicles, girders, betlrive
(carrying machine chains), and even floppy
disk/cassette player heads carrying tape. It is
remarked at this juncture that while stationary
loads or subsystems produce stress and
deformation that are ewstant, traveling loads
produce effects that are variable functions of
the position of the load (which is also a function
of time). Thus, when structural members are
under the passage of moving loads, the
interaction between the passing load and the
strucure makes the dynamic response analysis
very complex. Under the relevance in the
analysis and design of railway tracks, bridges,
elevated roadways, decking slabstc, the
dynamic response of structural members under
the passage of moving loads had been
extensively investigated and several
experimental and numerical studies have been
reported in the literature in recent years
(Muchnikov, 1953; Kenny,1954; Stanisic, et

al., 1968; Sadiku and Leipholz1989; Oni and
Omolofe, 2010 Jimoh et al, 2017; Jimoh
2017). In this study, the concern is bedagpe
flexure under moving loadsviany researchers
have developed various solution techniques to
the transverse vibration of Timoshenko beam
which includes semanalytical nethod
(Esmailzadeh and Ghorashi999, transbrm
matrix method (Ashour and Farag, 2090
integral transform method (Milomir et
al.1969) Gal er ki
1974 Jimoh and Awelewa, 2017 finite
element method¢Lou et al 2006 Awodola et
al. 2019 time-domain spectral element method
(Mukherjee et al. 2021), finite difference
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general solutions for the transverse vibrations

of a Timoshenko beam. This includéldan et

al., 1999, the general solution is obtained for

t wo freqguen<w amanygwm, ©
excluding the ¢®&imefal, fr e
2017) and (Rensburg and Merwe, 24)
developed a general solution that includes the
three frequencies range., w<w:. a n d = wy

i ncluding the «cutoff fre
However, their method of solutiorcannot
handle prestressed Timoshenko beam resting
on a biparametric foundation. Thus, in this
study, we discuss the mathematical formulation

of the general solutions of simply supported
Timoshenko beam resting on a-frametric

foundation subjected to moving odds
considering t<hwearfd>@@uen
using MAA.

2 Problem Formulations

The The problem of prestressed Timoshenko beam
of length0 on biparametric foundation subjected to
moving loads is governed by an initial boundary
value system of equations. This system of equations
can be written in matrix form as

1)
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6 o is the transverse displacemeéiofd is

the rotation of the cross section due to bending,
"Oafv is the external transverse forée, 0O is
the axial forcep  07Fa is the Winkler
foundation U is the stiffness of thehear
layer,O 07&a is the young modulus® 0¥

& is the shear modulus, 'QTh is the mass
density,0 & is the crossectional area,

‘O a isthe moment of inertia, andis the shear
correction factor. The natural and geometric
boundary conditions relevant to eq. (1) are given
by

Y 1O Yo éi6md O oNn

YO Y 6 €1 60m 6 oNn

O D % 6 €10 1D % 0N

O O % 0 €10 0 % 0N
3)

where”Y afd and%.cfp are the transverse shear
force and bending moment, respectively, given as

Yad e 06— %N 0 o 06N (4

and the initial conditions are given as

b Qen —— Qon  (5)

3 The Free and Forced Vibration
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3.1 General Solution

In order to obtain the eigenfunctions (natural
modes) for the model under discussion, we must
first obtain the general solutions for the free

vibration problem. Thus, we consider the
homogeneous equation of eq.(1) as follow
b — vodd m (6)

We assume the the solution of eq. (6) are in the
following form:

_ Y @
0 ofD . Q ®» O
B w (7)
VM Do X

where“(s an imaginary numberr, is the angular
frequency andi denotes the wave number.
Therefore substituting eq. (7) into eq. (6) yields the
following algebraic equations
1w

00 Tt

o LG

1 ‘ ©)

From which we obtain eigenvaluas For the
existence of notrivial solutions, the determinant
of the 2 2 matrix in eq. (8) must vanish at certain
values ofi . Thus, a dispersion equation is obtained
as follows:

o —11r Y wei — m (10
The eigenvalues are given by
I — 11 Qf ww 7"
n [T Qf ww TQf T 1
"0 1'Q pleloft (11)

The corresponding eigenvectarsare given by
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" le g (12) o L R
A Qr ww

Of the four roots, the two given by
. . T we 1T Qf TQr 11
l — 11 Qf ww I (17)
n T 1 QF W w TQf 11 - o

) w . Wwo T Qf T
Q¢ 170 e 18
plt ( (18)
13) -

w — 0w [ Qf A

are either real or imaginary depending on the
frequency (for a given material and geometry), (19)

and the other two roots given by _ _ _
By using the results, (15) and (16) can be written in

o terms of sinusoidal andhyperbolic function
i — 11 Qf W 7N functions as follows:

(a) Whenrt ] 1

L 5 Y 5 [ Gbo . QWED®
Q¢ 1Q oft (14) 5 & aGEdeo © Qi wboe
are always imaginaryi are real when the L 1 @ . WERD®
- — o HEdde 0 i e 2V
frequency isless o and are imaginary when the
frequency is greater thanw . We call this cutoff (b) When 1
frequency or the critical frequenty . Therefore, Y & i odo L HEDO
we must consider twoases when obtaining spatial Bo ° Qbhéhvo ° Qi o
solutions: i.e 1 ®E R 1 ).Byusingthe B B B
four eigenvalues given by eq. (11), the spatial . Eﬁ(ﬂﬂ~ 5 stu:w~
solution can be written as follows: "Quw £Ruw Qi "Qéw
21
(& Whenrt ] 1 (21)
Where
Q —fr® 0 1] N —fd 0 7
Wk BYO‘:) B QUQ Q6Q Q60 L
Q6Q Q60 (15) @ —Te v ] (22)
(b) When 1 The present spatial solutions (20) and (21) are now
the expression for three frequency ranges
N T 1 and T
®® k . B dvQ Q6Q Q60Q
B w
QO6Q  Q6Q (16)
where 3.2 Natural Frequency and Mode Shape
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Analytical closed forms of natural frequencies and . — . o
mode shapes are to obtained for specific boundary! we we TYE & phhotd e
condition, our present study is limited to simply

supported conditions given by (28)

s S O e R . h where

0 ou m O0e— 06— m . w0 U — 0 1

(23) s . . Ny
Ye — QF — W Ww oL ] Qu

We shall considered three frequency ranges

separately as follows: (29)

3.2.1 When [0) 04 Next we obtain the mode shapes corresponding to

the natural frequencigs ¢ (¢ plthesE ) by
By substituting eq. (20) into (23) yields a matrix determine the values af and 6 from (24) in

equation following forms:

Jymo m p 6 ¢ m & & ™ (30)

B m Tt WQ . . ‘
PY O i ®0 OEDD Thus, thee ®@mode shape corresponding to £
vk O o GQI MWD FQOE DO from (20) is written as

T P 6 m oo Yoo . OFF

L o2 0 m © % Be ° q Ao
OElwB® Al @& T  ofcfead
SQOETOD GQAT @ 8 m PrRFEHE

(24) (31)
where

For the existence of a ndnivial solution ofo , ('t
1, 2, 3, 4) in (24), the determinant of the matrix of "0 —f — VR (32)
eigenvalue problem must vanish. Thus, we obtain

3.2.2 When o 0N
O 0 TMmMOEAWQ &Q OEHAIOEIOD 1

(25) The general solution at 1 can be readily
. o obtained using equation (18) by allowing to
Since 3Q &Q mandOE iob T then if approach i.ewhen®d Tt Therefore, substituting
w mand the use of L’ Hosp
T ] 1 we have
becomes
OEGD T (26)
From which we obtain Y 5 O Y 5 REAYS)
3 ‘ S B w Qweé bw Qi WMo
0 — ¢ plglotssde (27)
A 8 P
Therefore, substituting (27) into (2{19) yields ° f ° T (33)

natural frequencigs given as: where
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Case 1.0 T, (if € is not an integer). In this
case, the corresponding mode shape can be derived

f —N® dohda ] — — QI W w ‘
L directly from (33) as follows
we Q
RORNEN N AY —1 — 0 , ‘ Yoow . s
w wk . 0 (387)
B ® I
(34)

Case 20 m, (if £ is an integer). In this case,
the natural frequency is equal to the natural
frequency of a bending mode shape and they

By applying simply supported boundary condition
given (23) vyields the following eigenvalue

equations ) _
_ become double frequencies given as:
'YT[ pl “ N
L £ W
B Tt ?’Y ‘ O E_|n_
N ) . (0V) o )]
YU w w k . 0 Sou g
“ B ) “ ~.€. W
B 0 Q Al-o-
NT[ p T[ pl’l O r r 3, L) 4 b 4 x
ge 60 n o G & Qi WE
{OEDD AT OO T po B , T e
uGQ OEDD 6Q AT ®O mo omyd ® 0 o0 a € QiXaon We 1
T (38)
g (35) 323 Wheno ou
T Substituting eq. (21) into (23) yields the following
For the existence of a ndrivial solution ofo , (& matr|~x equation
1, 2, 3, 4) in (35), the determinant of the matrix of I,p'YT[ . LS p
eigenvalue problem must vanish. Thus, we ES LS n B WQ
conclude that the cutoff frequenty is also a reYO iy Fwo we WL
natural frequency of a simply supported wg OO Wi O WQwE O
Timoshenko bam. Therefore, we must determine o
) p > 0 Tt
the mode shape corresponding to the natural n &0 S
frequency .We can see from (34) that mand C e T e n
Q Therefore, from (35), it is easily sh ' m WERW i 0 n
. er(_a ore, from (35), .I .|s easily shown HOi MWD S0 EQED U O -
that the following should be satisfied:
(39)
0 0 m 6 OEdbD m &1 6 OEd" Mysing the same procedure as inphevious section,

0Mi Qv — we have
(36) b 6 moOEdQ dQ OEHSOIOEM
Two following two cases shall be considered to (40)

satisfy (36): - s
y (36) Since Q WQ mandw T, then if] ]

we have the following two conditions
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OEbD meEIiOEM n (41)
Fromwhich we obtain

O — & & phe cBHb (42)

Therefore, substituting (27) into (1#)(19) yields
natural frequencigs given as:

1 W E W E TY €

¢ & pR b (43)
Thus, thee ®@mode shape corresponding to €
from (21) is written as

o ak YO OB+
"B w QN A6 (44)
¢ & pR b
and
© — & plesstb (45)

Therefore, substituting (27) into (3{19) yields
natural frequencigs given as:

(46)

Where® & and'Y & are defined in (29) by
replacing¢ with & Thus, the¢ @ mode shape
corresponding tp are obtained from (21) as

Y@ OB+
®w wk 0 e
B [ Q Ai-6-
a  plgrestb
(47)
where
Q — — 0 ] (48)

Thus, we need to consider the following types of However,
mode shapes for the transverse vibration of the €igenfunctions, 1

Jimoh (2021)

simply supported prestressed thick beam on bi
parametric foundation.

OB+ i

W e a € Qion WE i
Q Al-©

® o b T” RoiioRGE ¢ Qi n @i
OB+ )

w w 0 o a € Qi n We i
N Al©o

(49)
3.3  The Orthogonality Conditions for the
Model

In order to obtain the forced response of thick beam,
we use the method of eigenfunction expansion.
Therefore, the orthogonality conditions of the
eigenfunctions have to be established for the beam
model discussed so far. Thus, the spatial equations
of the homogeneous problem (9) can be written as
follow:

bw 1 0w (50)
where w denotes thee ® eigenfunction for the
vector of Y R of the beam model and
corresponds to the natural frequencyuniquely to
within an arbitrary constant. The operat&randM
are seladjoint (with corresponding boundary
conditions) if

b oL Qo m
OEQ (51)
OO O 0w Q®

Since the second condition in (51) is automatically
satisfied for the model. Therefore, using equation
(50), we can write the first condition in (51) as

11 L obo mw (52)

eigenvalues are
for (a

uniqgue to the
¢€). In order for
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the above equation to be zero, the integral has to be

Zero, i.e

Wi w m Q¢ ia ¢

(53)

This is the orthogonality condition for the
eigenfunctions. Wherd ¢, we normalize the
eigenfunctions by setting the integral equal to one,

w0 p Q& it plthotB

(54)

Combining equations (53) and (54), we can write

w0 0w
(55)
wher¢ is the Kronecker delta.
For this model, the corresponding boundary

condition for the setadjoint operatoK are found
to be

' yQ“-"Y

Qo
B — B

Then, substituting (49) into (54), we derive the
coefficients of each normal mode shape as follows:

«08Y — B 7

Qw B ¢

— s (56)

S ns s
ODp Q
(57)

3.4 Modal-Asymptotic Analysis of Forced

Vibration of the Model

The forced vibration of (1) can be represented by
using the mode summation given as

35

~

0 o W O 0
W O 0 W ww o
(58)
where v(x,t) stand for 6 ofd %eocfd  in this
model whilew 0,0 O,andw O arethe

generalized tim&lependent coordinates to be
determined in order to satisfy initial boundary
condition. Therefore, substituting (58) into (1) and
applying the orthogonality conditioms the normal
mode shapes yield the following equations

Qw ) -
5 | O N
Qw ) -
s | @ N
Qw . -
5 | @
¢ plgiors

(59)

where the generalized forces are defined by

Q ®  ®QdO QG
0 O 6 OR Qo
(60)
where "Qafd is the distributed load parameter

given in (2). For this problem, the distributed load
moving on the beam has mass commensurable with
the mass of the beam. Consequently, the load inertia
is not negligible but significantly affects the
behavior of the dymaical system. Thus, the
distributed loadOafp takes the form
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N~ T T p I w1 0 OECTE p* wo ”
Oawd 0VO0w Wop — — _ L UEg p a CE s
P QTo C* w! o « ¢ p oak o o
®— 06 afd 61 . § Al @ “ QO .
(61) cuir &k - i Z [ are

wherel is the magnitude of the transverse
distributed force Qis the acceleration due to 0 OEd p*“ &o

gravity, qis the initial velocity,Oow @ ois the - & o ale o 0
Heaviside function which is a typical engineering

function made to measure engineering applications .0 AiT@ pedo .
involving functions that are either "on" of "off". wu ate - & p [ ale
Therefore, incorporating equations (6®1) into

(59), thereafter, evaluating the integrals vitth 0 OEd] p=“ &o .

use of Fourier sine series representation of the r G p [ akk o o

Heaviside function, yields the following equations
0 A& 'Y n (63)

06 and
— 1 w o - O d4&hg
o 7 6 D (64)
Al & & y . . .
B Gi P QT'O a ke 0 U 0 U - (0]
C p - ” -‘Qala - ” Y 6'8 U ” O Ur]
0 OEd¢E p“ wd . . . 6 0 _ . b £ O
. T ake 0] v ~ .OUI’] U ~ bl’]— 5 n
. 8 0 Al C o, . Y r -
U G - © 0790 4i P i
CE p Ca v w
o £ WA @
o r OEde p OBEH—OE+—N
0 OEde p*“ wo , . v v
— - Ol 0
G p L £ At @
[ OEdqe »p OE—I—L‘) OE—I—0 n
. .0 AT@ p*ho
wo  ak o & p | Uk Y B DA Q
§ —_— AI—%—OE—IG—F]
0 OEdgE p*“ @od R E e A O
“ ¢ p a0 oo r — OEg »p A'I'—%—OE—TD—I‘]
0 A& 'Y n (62) g AR
r — Ai¢@ pAI-6-OE—0
Qw v 0 0
— 1 W o - U ahQ ; L
D £ £
[ o r nr o r n
0 Al ¢ “ 0o .
: @ P79 4k e "
e p [ Y [
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(65)

By considering (62} (63), we can derive the
vibration responses of the beam for cases

Case 1 When the beam is subjected to a load of
negligible inertia, i.e. by setting and- to zero.
This is termednoving force problem.

Case 2When the beam is subjected to a load of not
negligible inertia, i.e. when and- are greater
than zero. This is termeadoving mass problem.

However, in this study, we shall focus on the
analysis of forced vibration of the model case 2

3.4.1 Modal-Asymptotic Analysis of Forced
Vibration of the Model when the Beam is
Traversed by Moving Mass

In this section, the solution to the entire equations
(62)—(64) are sought when no terms of the equation
or any of the equation is neglected. However, there
are have been report in the Literature in which the
external transverse foré@c and arbitary initial
conditions were fully considered by taking into
account the pure shear mode shépe to the best
knowledge of the author. Thus, the equations £62)
(63) takes the form

o o S W aR
p -0 ak
T - 00 ak
p -0 ar o~ °
0 A& 'Y
p -0 ale
(66)
) o] c-&f)aﬁ‘zw 0
p -0 are
] -0 ak
p-GdFﬂ\‘s @ 0
0 Al 'Y
p -0 are
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(67)
where
0 afe o &k
0 Al ¢ “ e .
- © p° w0k
¢t p
0 O Eqe “ Do .
- d\ P [ are
¢ p
0 &l o afe
0 Al & “ Do .
. @ P wf ake
¢t p
0 O Eqe “ e .
D OBk pdo
¢t p
0 afe o afe
b Ai@ p*do .
. @ P wf ahe
¢ p
0 O Eqe “ e .
- € P90 i
¢t p
(68)

In order to solve the problem, an analytical
approximation method calledsymptotic method

due to Strubble which is often used in treating
oscillatory system will be use. By this technique,
one seeks the modified frequency corresponding to
the frequency of the free system due to the presence
of the effect of the moving mass. Following the
procedures extensiwel discussed in [14], the
homogeneous part of equations (66)67) are
simplified to take the form:

0 (69)

(70)
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Thus, equation (76) represent the solution to forced
] ] p —1 4Rk — " vibration of prestressed thick beam of lengtbn
bi-parametric foundation subjected to moving
loads using ModaRsymptotic Analysis. It is also
clearly shows that the shear mode shape @
must be considered when a thick beam is subjected
to moving loads as well as to initial rotation
are called modified natural frequency representing o, it and angular velocity h_
the frequency of the system due to the presence of
the moving mass. Thus, the entire equations £62)
(64) reduces to

<
5

(71)

4 Numerical Investigation

w 0 1 W o (72) In order to investigate the dynamic response of the
) i ) o present study, we reconsidered the uniform simply
w o 1 o w o (73) supported Timoshenko beam that was previously
© 0 1 6 5 (74) employed by Esmalizadeh and Ghorashi [7]. The

geometric and material properties data of the beam are
where as follows: lengthd = 27.374m; area moment of inertia
"O=5.71 pmt & ; cross sectional arda o® p Y O
pt ; Young''® aqdod wpit ulsh ; shear
o 0 Ai-d vn (75) modulgs 'O x& pmt 0G , mass density’
p L CQF ,andshear correction factor taken as
Therefore, solving (72 (74) using the method of  T@&. For the analyses of forced vibrations, we assumed

w o 0 Al YN

Laplace transforms in conjunction with convolution that the mas$ T v AndQ wfai . We
theory for unknown generalized coordinates |, also assumed that the beam has null initial conditions.
w andw , and then substituted the results into
(58) to obtain the vibration responseda®ows: 4.1 Model Verification
L W W W A AET , In this subsection, we aim to verify the accuracy of the
el 1 @ 0Okl o tot present methMAA. Thus, the eigenfrequency and the

dynamic response of the simply supportédYoeam is
computed and compared to the existing literature.
Following the work of(Kim et al, 2017), we compare

the natural frequencies and mode shape of the present

0w R i
o 00ET o tat work and(Kim et al, 2017).

o TARO o TL(L) -

It is seen from Table 1 that regardless the values of axial
force and foundation stiffness, the natural frequencies

w TANOO TLO'O s 1 and the corresponding modeape parametei®
of the simply supported beam on the elastic foundation
W W oz~ , in the present work is in good agreement with that
] LOOEIO TQf reported by(Kim et al, 2017) who computed the

frequency parameter without considering both axial
, U o I force and foundation stiffnes
W AT O o 1—00 T
(76)
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Table 1: Frequency parameterS&thick beam on an elastic foundation at various values of the Mode number (n)

Jimoh (2021)

Mode(n) at Q 1 Kim et al 1
© 1N 1V present present "Q (2017) (2017)
1 0.70 6.29 0.72 6.29
2 1.21 25.19 1.44 25.14
3 1.51 56.84 2.15 56.41
4 1.93 101.43 2.86 99.92
5 3.28 159.28 3.53 155.39
Mode(n) at Q 1 Kim et al 1
O mH T present present "Q (2017) (2017)
1 0.70 5.40 0.72 6.29
2 1.21 24.35 1.44 25.14
3 151 56.01 2.15 56.41
4 1.93 100.61 2.86 99.92
5 3.28 158.46 3.53 155.39
Mode(n) at Q 1 Kim et al 1
O tmht present present "Q (2017) (2017)
1 0.70 6.23 0.72 6.29
2 1.21 25.14 1.44 25.14
3 151 56.79 2.15 56.41
4 1.93 101.38 2.86 99.92
5 3.28 159.23 3.53 155.39
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Figure 2. Effect of axial force on the dynamic response of the simply supported beam without foundation support for the case of
constant velocitg = 0.042%and di fferent excitation frequencies: (a) a =
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Figure 3. Effect of axial force on the dynamic response of the simply supported beam with foundation #tiffrelsg 1, and
foundation modulaKg = 4 x 1¢ support for the case of constant velocity ¢ = 0.0425vc and different excitation frequencies:
(a) a 0; (b) a 40; (c) «a 80; (d) a 120
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Figure 4. Effect of moving velocity on the dynamic response of the prestressed simply supported beam resting on an elasti
foundation with different excitation frequencies: (a) a =
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3.2 Discussions

Jimoh (2021)

are much highetthe dynamic deflection of continue
decreases as the value of axial force increases.

Figure 1 shows the dynamic responses predicted at

x/L = 0.25, when the Timoshenko beansigjected
to a distributed force at its middle poxit = 0.5. The
responses are the transvedsplacementi(0.29., t),
the total slopas ( Q. t)2tbe slope dug bending
¢(0.24_, t) andthe shear angle due to transverse she
forceLWEO .(AN51)2 §(0.29.,1).

Figure 1shows the deformed shape at four different
values of axial forcel(n = 0, 4x 106, 4x 1@, 4x 1)

for the dynamic responses. 8sen from the figures,
the dynamic deflection of the beam decreasing

as the value of axial force is increasing.

The effect of axial force on the dynamic response o
the simply supported Timoshenko beamithout
foundation support for the case of constaglbuity ¢

= 0.042%., (wherev; is the lowestcritical speed
given asv. = 2fiL andfz is the first natural frequency
in Hz.) and different excitation frequencies is
depicted in figure 2. In figures (2a) and (2b), in the
caseof moving o ad a =he Gase obmowng i
har monic | oad a 40 r a

excitation frequencies that the dynamic deflection of

the beams firstly decreases as the valuesiaf force
increases but when the axial is very high Kay= 4
x 1%, the dynamialeflectionthen increases while in

In order to investigate the effect of the moving
velocity on tle dynamic response of teams, the
values of the axial for¢gefoundation modulusand
foundation stiffness are kept constant, Bay= 4 x

AP, Ky = 4x 10 andKy = 4x 10. The numerical

computation is performed with four various values of
theconstanwelocity, ¢ = 0.25, 0.5v¢, V¢, 1.5vc nvs,
and at four different excitation frequencees 20,
60, 80 rads.

Figure 4 shows the effect of the moving velocity on
he dynamic response of the prestressadply
supported beam resting onoaeparameter elastic
foundation. As seen in figure (4awhen the
excitation fr e gutkendynamica
deflection of the beams firstly increasesth an
increment in the moving velocity, it then decreases.
Regardless the value of tkgcitationfrequency, the
dynamic deflection of the beam is at the pick level

2 ¢ ovingelocity c = v¢, In order words, atag e
[ [

th
:g fo?m afion Stiffnest gnH Sxfal fofrcg, Irtheré

critical velocity at which the dynamic deflection
reaches a maximum value faryacase of excitation
frequency at a given moving velocity.

figures (2c¢) and (2d) where the excitation frequencies

4. Conclusions

The problem of the dynamic response of
prestressed thick beam subjected to moving
loads using modaasymptotic analysis (MAA)
has beerexamined. The dynamic response of the
simply supported beams for movingasscase has
beencomputed at different values of axial force,
foundation stiffness, moving velocity and excitation
frequency. The analyses exhibited the following
features:

1 The defemed shapes dhick beam strongly
depend on the speeds of the moving load.
There are critical speeds at which the
dynamic system reaches a pick value, and

44

this speed is called critical speed which is
affected by the foundation stiffness and the
excitationfrequency.

The effect of the moving velocitglepends

on the excitation frequency and this affect
the dynamic deflection of the beam.

A set of natural frequencies and mode
shapes are presented in closed forms for

T

frequency range 0 <
cutoff frequency.

T As the value values of axialofce
parameters increases, the transverse

deflection of the beam model decreased.
This is strongly depending on the excitation
frequency.
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