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Abstract

In this paper, the motion of a non-prismatic Bernoulli-Euler beam with exponentially varying
thickness resting on variable elastic foundation and under the loads moving with constant velocity
is analyzed. The governing equation is a fourth order partial differential equation. The solution
technique is based on the method of Galerkin with series representation of Heaviside function
and Struble’s asymptotic method. The results shows that, for the same natural frequency, the
critical speed for the system traversed by moving force is greater than that under the influence
of a moving mass. Also, increase in the values of the structural parameters such as foundation
stiffness, foundation modulus, length of the beam and exponential factor reduces the response
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amplitude of the beam for both moving force and moving mass problems. Furthermore, it is
found that the moving force solution is not always an upper bound for the accurate solution for
the non-prismatic Bernoulli-Euler beam.

Keywords: Non-prismatic beam, variable elastic foundation, exponentially varying thickness,
Struble’s asymptotic method.

1 Introduction

The study of non-prismatic beam under moving loads forms a very important structural element
in engineering design and construction. It has also become the objective of various researchers in
the field of Applied Mathematics. In general, problems of this type are mathematically complex
if analytical approach is used. Thus, most of the research works available in the Literature are
those in which Numerical technique is used. This is due to great amount of computational labor
which is required both to set up and solve the necessary equations. A major break-through in
this field of research is the work of Timoshenko [1] who gave impetus to research work in this area
of study. The analysis of the dynamic response of a simple beam continuously supported by a
viscoelastic foundation to a moving load, moving at variable speed was considered. The analysis
reveals several resonance conditions depending on the viscoelasticity of the foundation. Also a
theory for the response to an arbitrary number of concentrated moving masses of a rectangular
plate continuously supported by an elastic Pasternak type foundation was developed [2]. It was
found that the critical speeds of the system increased with increase in the values of the foundation
modulli whether the inertia of the moving load is considered or not. The displacement response
of a simply supported non-uniform beam resting on an elastic foundation to several moving load
was later taken up and concluded that the maximum transverse deflection of the beam is always
greater than the displacement of the moving mass [3]. A modification of the asymptotic method was
used to simplify the resulting sequence of differential equation [4]. Chen employed the differential
quadrature element method (DQEM), to investigate the vibration of beams on Winkler [5] and
Pasternak [6] foundations. Hosing et al. [7] equally worked on the solution to natural flexural
vibrations of a continuous beam on discrete elastic support . DTM, first proposed by Zhou [8],
was employed to find free vibration of a constant thickness beam on elastic soil by Catal [9]
and Balkaya et al. [10] . Other than the above, in recent years, a few researches have been
conducted concentrating on exponential characteristic of beams. Awodola [11] solve the problem
of vibration of a beam under exponentially varying magnitude moving load. Mao and Pietrzko [12]
used the Adomian decomposition method (ADM) to examine the free vibration of a beam with
a continuously exponential variation of width and a constant thickness along the length. Sayad
et al. Study vibration analyses of a tapered beam with exponentially varying thickness resting
on Winkler foundation using the differential transform method [13]. It is well known that in the
dynamical system like this, analytical are desirable as a method of solution, as there often shed
light on vital information about the vibrating system.

Thus, this paper studied the flexural motions under moving loads of non-prismatic Bernoulli-Euler
beam with exponentially varying thickness resting on variable elastic foundation using analytical
approach. Several numerical examples will also be presented. It is assumed that the speed at which
the load traverses the structural element is constant.

2 Methodology

The motion of a non-prismatic Bernoulli-Euler beam with exponentially varying thickness resting
on variable elastic foundation and under the of loads moving with constant velocity is governed by
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the following fourth order partial differential equation

∂2

∂x2

[
EI(x)

∂2

∂x2
V (x, t)

]
+ ρA (x)

∂2V

∂t2
+ K (x)V (x, t)− G (x)

∂2

∂x2
V (x, t) = f(x, t) (2.1)

Where x (0 ≤ x ≤ L) is the distance along the beam; t is the time; I(x) is the variable moment
of inertia of the beam cross section at a distance x; ρ is the beam mass per unit volume; E is
the beam elastic modulus; A(x) is the variable cross sectional area at x; V (x, t) is the beam
lateral displacement; f(x, t) shear force. K(x) and G(x) are the variable foundation stiffness and
foundation modulus per unit length of the elastic structure.

Fig. 1. Geometry of the exponential beam on a bi-parametric foundation

For a constant E and a variable cross section with respect to the horizontal axis (x), as illustrated
in Fig.1, we can expand eq. (2.1) to obtain:

EI (x)
∂4V

∂x4
+2E

∂I (x)

∂x

∂3V

∂x3
+E

∂2I(x)

∂x2
∂2V

∂x2
+ρA (x)

∂2V

∂t2
+K (x)V (x, t)−G (x)

∂2

∂x2
V (x, t) = f(x, t)

(2.2)

Denoting the beam’s breadth and depth by b = bo and a = 2aoe
αx, respectively, one can easily

write:

A (x) = ab = 2aoboe
αx, I (x) =

1

12
a3b =

2

3
a
3

o
boe

3αx (2.3)

Where is a factor to show exponential rate of the beam. Substituting Eqn. (2.3) into (2.2), the
following relation is obtained

2

3
a
3

o
boe

3αx ∂4V

∂x4
+ 4Eαa3oboe

3αx ∂
2V

∂x2
+ 6Ea3oboe

3αx ∂
2V

∂x2
+ 2ρaoboe

αx ∂
2V

∂t2

+ K (x)V (x, t)− G (x)
∂2

∂x2
V (x, t) = f(x, t)

(2.4)

In this paper, the non- uniform elastic foundation K(x) and G(x) are given as

K (x)=Ko(4x− 3x2 + x3); G (x)=Go(12− 13x+ 6x2 − x3) (2.5)

2.1 The boundary conditions

The boundary conditions depend on the constraints at the beam ends, however for a simply
supported beam whose length is L, the vertical displacement at the beam ends are given as:

V (0, t) = V (L, t) = 0 (2.6)
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Vxx (0, t) = Vxx (L, t) = 0 (2.7)

It is assumed that the initial conditions are

V (x, 0) = 0 = Vtt (x, 0) (2.8)

Furthermore, the distributed load f(x, t) takes the form

f (x, t) =MgH (x− ct)

[
1− 1

g

(
∂2

∂t2
+2c

∂2

∂x∂t
+c2

∂2

∂x2

)
V (x, t)

]
(2.9)

Where M is the mass of the moving load, g is the acceleration due to gravity and c is the velocity
of the distributed mass, the time t is limited to that interval of time within which the mass is on
the beam, that is

0 ≤ ct ≤ L (2.10)

And H (x− ct)is the Heaviside function defined as

H (x− ct) =

{
1, x > 0
0, x < 0

(2.11)

With the properties,

(i)
d

dx
[H (x− ct)] = δ (x− ct) (2.12)

(ii) H (x− ct) f(x) =

{
0, x < ct
f(x), x ≥ ct

(2.13)

where δ (x− ct) represent the Dirac delta function and H (x− ct) is a typical engineering function
made to measure engineering applications which often involved functions that are either ”on” or
”off” .

2.2 Solution technique

In this section, in order to compute the response of the dynamic equation (2.4), we shall use
an elegant technique called Galerkin’s method often used in solving diverse problems involving
mechanical vibrations Ojih (2013). This method requires that the solution of the deflection of the
coupled equation is expressed as.

where xo is the equilibrium position of the longitudinal oscillating load, βis the longitudinal amplitude
of oscillation of the load and α is the longitudinal frequency of the load.

V (x, t) =

N∑
m=1

ym(t) sin
mπx

L
(2.14)

Thus, applying (2.14) to (2.4), one obtains

(2.15)
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To determine ym(t), the expressions on the left hand side of (2.15) are required to be orthogonal
to the function sin kπx

L
. Thus, equation (2.15) becomes∫ L

0

{
N∑

m=1

{
eαxsin

mπx

L
ÿm(t) +

(m4π4Ea2o
3ρL4

)
e3αxsin

mπx

L
ym(t)−

(2m3π3Ea2oα

ρL3

)
e3αxcos

mπx

L
ym(t)

−
(3m2π2Ea2oα

2

ρL2

)
e3αxsin

mπx

L
ym(t) +

( K(x)

2ρaobo

)
sin

mπx

L
ym(t)−

m2π2G
(
x
)

2ρaoboL2
sin

mπx

L
ym(t)

+
MH

(
x− ct

)
2ρaobo

[
sin

mπx

L
ÿm(t) + 2c

(
mπ

L

)
cos

mπx

L
ẏm(t) + c2

(
mπ

L

)2

sin
mπx

L
ym(t)

]}

− Mg

2ρaobo
H
(
x− ct

)}
sin

kπx

L
dx = 0

(2.16)

Rearranging equation (2.16), yields

I1ÿm(t) +

(
n1I2 − n2I3 − n3I2 + n4I4 + n5I5

)
ym(t) +

M

2ρaobo

[
I6ÿm(t) + 2cn6I7ẏm(t)

+ c2n7I6ym(t)

]
= PoI8

(2.17)

Where

n1 =
m4π4Ea2o

3ρL4
, n2 =

2m3π3Ea2oα

ρL3
, n3 =

3m2π2Ea2oα
2

ρL2
, n4 =

Ko

2ρaobo
, n5 =

m2π2Go

2ρaoboL2
,

n6 =
mπ

L
, n7 =

(mπ
L

)2
, I1 =

∫ L

0

eαxsin
mπx

L
sin

kπx

L
dx, I2 =

∫ L

0

e3αxsin
mπx

L
sin

kπx

L
dx,

I3 =

∫ L

0

e3αxcos
mπx

L
sin

kπx

L
dx I4 =

∫ L

0

(4x− 3x2 + x3)sin
mπx

L
sin

kπx

L
dx,

I5 =

∫ L

0

(12− 13x+ 6x2 − x3)sin
mπx

L
sin

kπx

L
dx I6 =

∫ L

0

H (x− ct) sin
mπx

L
sin

kπx

L
dx,

I7 =

∫ L

0

H (x− ct) cos
mπx

L
sin

kπx

L
dx, I8 =

∫ L

0

H (x− ct) sin
kπx

L
dx, Po =

Mg

2ρaobo
(2.18)

Further simplification and rearrangement of (2.15) after substituting the values of the integrals’
results in (2.17) into it, one obtains

(2.19)
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Where

εo =
M

2ρaoboL
(2.20)

βf
2 =

n1I2 − n2I3 − n3I2 + n4I4 + n5I5
I1

(2.21)

Equation (2.2) is now the fundamental equation for the dynamic problem. It follows that two
special cases of the equation (2.2) arise, namely the moving force and moving mass problems.

2.2.1 Non-prismatic bernoulli euler beam traversed by moving force

In this section, an approximate model of the differential equation describing the response of the
dynamic problem is obtained by neglecting inertia terms, that is εo = 0. To this end, Eqn. (2.2)
becomes

ÿm (t) + βf
2ym (t) = Fk [cos (θt) −Rk] (2.22)

Where

Fk =
PoL

kπI1
, θ =

kπc

L
, Rk = (−1)k (2.23)

Equation (2.22) is a second order ordinary differential equation, therefore, subjecting the equation
to a Laplace transform defined as

η =

∫ t

0

(∼) e−stdt (2.24)

In conjunction with the initial conditions defined in (2.8), gives the following algebraic equation

ym (s) = Fk

(
s

s2 + θ2
− Rk

s

)(
1

s2 + βf
2

)
(2.25)

Thus, the equation reduces to of finding Laplace inversion of (2.25), so that the Laplace inversion
of ym (s) is convolution of (2.25) defined as

f(s) ∗ g(s) =
∫ t

0

f (t− u) g (u) du (2.26)

where

f(s) =

(
1

s2 + βf
2

)
and g(s) =

(
s

s2 + θ2
− Rk

s

)
(2.27)

Therefore, Laplace inversion of (2.25) gives

ym (t) =
Fk

βf
(I1a −RkI1b) (2.28)

Where

I1a =

∫ t

0

sinβf (t− u)cosθu du (2.29)

I1b =

∫ t

0

sinβf (t− u)du (2.30)

It is easily to show that

I1a =
βf

βf
2 − θ2

(cosθt− cosβf t) (2.31)

I1b =
1

βf
(1− cosβf t) (2.32)

Substituting (2.31) and (2.32) into (2.28), after some rearrangement, one obtains
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ym (t) =
Fk

βf
2
(
βf

2 − θ2
) [βf 2 (cosθt− cosβf t)−Rk

(
βf

2 − θ2
)
(1− cosβf t)

]
(2.33)

When (2.33) is substituted to (2.14), one obtains

V (x, t) =

N∑
m=1

Fk

βf
2
(
βf

2 − θ2
) [βf 2 (cosθt− cosβf t)−Rk

(
βf

2 − θ2
)
(1− cosβf t)

]
× sin

mπx

L

(2.34)
(2.34) is the transverse deflection of non-prismatic Bernoulli-Euler beam with exponentially varying
thickness resting on variable elastic foundation under the action of moving distributed force.

2.2.2 Non-prismatic bernoulli euler beam traversed by moving mass

In this section, the solution to the entire equation (2.2) is sought when no terms of the coupled
differential equation is neglected i.e. εo ̸= 0 . Evidently an exact solution to these equations is not
possible. Though the equations yield readily to numerical techniques, an analytical approximation
method is desirable as a solutions so obtained often shed light on vital information about the
vibrating system. Thus, we resort to a modification of the asymptotic method due to Strubble
which is often used in treating oscillatory system. To this ends, equation (2.2) is rearranged to take
the form

ÿm (t) +
2cεoQ2

1 + εoQ1
ẏm (t) +

βf
2 + c2εoQ3

1 + εoQ1
ym (t) =

Fk

1 + εoQ1
[cos (θt) −Rk] (2.35)

Q1 =
L2

8I1
− 4mL2

π2I1

∞∑
n=0

(
cos (2n+ 1) πct

2n+ 1

)(
kr[

r2 − (m+ k)2
] [
r2 − (m− k)2

] + m

r (r2 − 4m2)

)
(2.36)

Q2 = − mkL

2 (m2 − k2) I1
+
2mL

πI1

∞∑
n=0

(
sin (2n+ 1) πct

2n+ 1

)(
k
(
r2 +m2 − k2

)[
r2 − (m+ k)2

] [
r2 − (m− k)2

] + m

(r2 − 4m2)

)
(2.37)

Q3 =
−m2π2

8I1
− 4m3

I1

∞∑
n=0

(
cos (2n+ 1) πct

2n+ 1

)(
kr[

r2 − (m+ k)2
] [
r2 − (m− k)2

] + m

r (r2 − 4m2)

)
(2.38)

We are interested in the modified frequency corresponding to the frequency of the free system due
to the presence of the effects of rotatory inertia. An equivalent free system operator defined by the
modified frequency then replaces equation (2.35).

To this end, we set the right hand side of (2.35) to zero and consider a parameter Γo < 1 for any
arbitrary ratio εo, defined as

Γo =
εo

1 + εo
(2.39)

εo = Γo + 0
(
εo

2) (2.40)

Thus, in view of (2.40), we have

ÿm (t) + (1 + ΓoQ1) (2cΓoQ2) ẏm (t) + (1 + ΓoQ1)
(
βf

2 + c2ΓoQ3

)
ym (t) = 0 (2.41)
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It is observed that if we set Γo = 0, in (2.41),the result will be solution corresponding to the case
in which the inertia effect of the mass of the system is regarded as negligible, then the solution of
equation (2.41) becomes

ym (t) = ∆acos [βf t− Ωf ] (2.42)

Where ∆a and Ωf are constants. Since Γo < 1, Strubble’s technique required that the asymptotic
solution of the homogeneous part of the equation (2.41) be of the form

ym (t) = (m, t) cos [βf t− ϕ (m, t)] + Γoy1 (t) + 0
(
Γo

2) (2.43)

Where (m, t) and ϕ (m, t) are slowly varying functions of time.

The variational equations [2,4] describing the behavior of (m, t) and ϕ (m, t) during the motion of
the force are obtained by substituting (2.43) into (2.41). Thus, we have

[
2ϕ̇ (x, t)βf − βf

2ΓoQ1 + c2ΓoQ3

]
[ (m, t) cos [βf t− ϕ (m, t)]]

−
[
2ψ̇ (x, t)βf + 2cΓoQ2

]
[βfsin [βf t− ϕ (m, t)]] + Γoy1 (t) = 0

(2.44)

Extracting those terms which contribute to the variational equation to 0(Γo), we have[
2ϕ̇ (x, t)βf − βf

2ΓoL
2

8I1
+ c2Γom

2π2

8I1

]
[ (m, t) cos [βf t− ϕ (m, t)]]

−
[
2ψ̇ (x, t)βf + cΓomkL

(m2−k2)I1

]
[βfsin [βf t− ϕ (m, t)]] = 0

(2.45)

Setting the coefficients of sin [βf t− ϕ (m, t)] and cos [βf t− ϕ (m, t)] to zero, we have the

ψ̇ (x, t) = − cΓomkL

2 (m2 − k2) I1
(2.46)

and

ϕ̇ (x, t) =
βfΓoL

2

16I1
− c2Γom

2π2

16I1βf
(2.47)

respectively. Equations (2.46) and (2.47) which implies

ψ (x, t) = A0e
ϑt (2.48)

and

ϕ (x, t) =
βfΓoL

2

16I1

(
1 +

c2m2π2

β2
fL

2

)
t+ Cm (2.49)

are termed the variational equations.

Therefore, when the effect of the cross-sectional dimensions or rotatory inertia is considered, the
first approximation to the homogeneous system (2.41) is

ym (t) = (m, t) cos [βmt− ϕ (m, t)] (2.50)

where

βm = βf

[
1− ΓoL

2

16I1

(
1 +

c2m2π2

βf
2L2

)]
(2.51)
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is the modified frequency due to the effect of cross-sectional dimensions of the beam. It is observed
that when Γo = 0, we recover the frequency of the moving force problem when the inertia influence
is neglected.

Thus, equation (2.41) takes the form

ÿm (t) + βm
2ym (t) = 0 (2.52)

and equation (2.35) then becomes

ÿm (t) + βm
2ym (t) = Fk [cos (θt) −Rk] (2.53)

Since equation (2.53) is analogous to equation (2.22), therefore, the solution to (2.53) after inversion
is

V (x, t) =
N∑

m=1

Fk

βm
2
(
βm

2 − θ2
) [βm2 (cosθt− cosβmt)−Rk

(
βm

2 − θ2
)
(1− cosβmt)

]
× sin

mπx

L

(2.54)
Equation (2.54) represent the corresponding dynamic response to a moving mass of our non-
prismatic Bernoulli-Euler beam with exponentially varying thickness resting on variable elastic
foundation.

3 Results and Discussion

The transverse displacement of a non-prismatic Bernoulli-Euler beam may grow without bound.
Evidently, from equation (2.34) that the simply supported beam traversed by a moving force will
be in a state of resonance when

βf =
kπc

L
(3.1)

While equation (2.54) shows that the same beam traversed by a moving mass encounter a resonance
effect at

βm =
kπc

L
(3.2)

Consequently,

βf =
kπc
L[

1− ΓoL2

16I1

(
1 + c2m2π2

βf
2L2

)] (3.3)

Thus, from equations (3.1) and (3.3), for the same natural frequency, the critical speed for the
system made up of a simply supported non-prismatic Bernoulli-Euler beam with exponentially
varying thickness traversed by a moving force is greater than that under the influence of a moving
mass. Thus, resonance is attained earlier in the moving distributed mass system than in the
moving distributed force system. For the purpose of numerical analysis of the forgoing problem, the
velocity of the moving load and the length of non-prismatic beam are 30m/s and 15m respectively.
Furthermore, E = 2.02e+11, ao= 0 .25, bo=10, = -0.12. The deflection profile of a non-prismatic
Bernoulli-Euler beam with exponentially varying thickness traversed by a moving force is shown
in fig. (2a) - fig. (2d). It is observed that as the values of the varying parameters are increased,
the response amplitudes decreased. The same effect is shown for the moving mass model which are
shown in fig. (2e) - fig. (2h). Fig. (2i) illustrates the response of the beam for moving force and
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moving mass. Clearly, the response amplitude due to the moving mass is greater than that due
to moving force. Thus, the moving force solution is not always an upper bound for the accurate
solution for the beam problem.

Fig. 2. The deflection profile of a non-prismatic Bernoulli-Euler beam with
exponentially varying thickness traversed by a (i)moving force fig(2a-2d) (ii) moving

mass fig(2e-2h) and (iii) moving force and moving mass comparison

10
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4 Conclusion

An analytical solution is presented for the deflection response of non-prismatic Bernoulli-Euler
beam under the action of a distributed load moving with constant velocity. The solution technique
is based on Galerkin’s method and modification of the asymptotic method. The analysis exhibited
the following features:

1. The critical speeds of the system increases with an increase in the values of foundation
stiffness, foundation modulus and exponential factor in the problem of non-prismatic Bernoulli-
Euler beam with exponentially thickness resting on variable bi-parametric foundation.

2. As the foundation parameters increased, the transverse deflection of the beammodel decreased.

Thus, the risk of resonance was reduced as the value of the foundation parameters increased.
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