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ABSTRACT

Aims/ objectives : To obtain the analytical solutions of the governing fourth order partial differential
equations with variable and singular coefficients of non-uniform elastic beams under constant and
harmonic variable loads travelling at varying velocity.
Study design: The study makes use of the governing equation of beam incorporating some
parameters.
Place and Duration of Study: Department of Mathematical Sciences, Adekunle Ajasin University,
P.M.B 01, Akungba-Akoko, Nigeria, Federal University of Technology, Akure, Nigeria, between July
2016 and July 2017.
Methodology: The governing equation of the problem is a fourth order partial differential equation.
In order to solve this problem, elegant technique called Galerkin’s Method is used to reduce the
governing fourth order partial differential equations with variable and singular coefficients to a
sequence of second order ordinary differential equations.

*Corresponding author: E-mail: alimi.adedowole@aaua.edu.ng;
E-mail: ajagbesul21@gmail.com;

http://sciencedomain.org/review-history/23708
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Results: The results show that response amplitudes of the non uniform beam decrease as
the value of the axial force N increases. Furthermore, for fixed value of axial force N, the
displacements of the simply supported non uniform beam resting on elastic foundations decrease
as the foundation modulus K increases. The results further show that, for fixed N and K, it is
observed that higher values of the load longitudinal frequency produce more stabilizing effects on
the elastic beam.
Conclusion: Higher values of axial force N and foundation moduli K reduce the risk factor of
resonance in a vibrating system. Also higher load longitudinal frequency produce more stabilizing
effects on the elastic beam thereby reduce resonance in a vibrating system.

Keywords: Galerkin’s method; non-uniform beam; concentrated loads; axial force; the (P-A-L)
variable velocity; longitudinal frequency; resonance.

1 INTRODUCTION

For some decades, the study of dynamic
response of structural members resting on
elastic foundation subjected to moving loads is
interesting and important, as some of the results
may be applicable in understanding the dynamic
behavior of roadways and runways. Among these
is the work of Stanistic et al [1], Fryba [2], Sadiku
and Leipholz [3], Adedowole [4], Oni [5], Oni and
Adedowole [6] and Jimoh and Adedowole [7] to
mention a few.

In the analysis of roadways and runways of
airports above, the structure is usually modeled
as beam or plate resting on an elastic foundation.
In general, loads on these types of structures are
loads moving with constant velocity such as the
wheel loads from moving vehicles and planes.
Hence, structural members on elastic foundation
under moving loads with constant velocity have
received considerable attention in the literature.

The more practical cases when velocities at
which these loads move are no longer constants
but vary with the time have received little attention
in literature. This may be as a result of the
complex space-time dependencies inherent
in such problem. Specifically, even when
such structures are non-uniform the analytical
solutions involving integral transforms are both
intractable and cumbersome. However, such
practical problems as acceleration and braking
of automobile on roadways and highway bridges,
taking off and landing of air-crafts on runway
and braking and acceleration forces in the
calculation of rails and railway bridges in which

the motion is not uniform but a function of
time have intensified the need for the study
of the behavior of structures under the action
of loads moving with variable velocity. The
class of problems was first tackled by Lowan
[8] who solved the problem of the transverse
oscillations of beams under the action of moving
variable loads. Much later, Kokhmanyuk and
Filippov [9] treated the dynamic effects on the
transverse motion of a uniform beam of a load
moving at variable speed. Wang [10] studied
the dynamical analysis of a finite inextensible
beam with an attached accelerating mass. He
employed Galerkin procedure in conjunction with
the method of numerical integration to tackle the
partial differential equation which describes the
transient vibration of the beam mass system. He
concluded that the applied forward force amplifies
the speed of the mass and the displacement of
the beam.

In particular, Oni and Omolofe [11] worked on
the dynamic Behavior of non-uniform Bernoulli-
Euler Beams subjected to concentrated loads
travelling at varying velocities. They obtained
an analytical solution to the dynamical problem.
For the illustrative classical boundary conditions
considered, they found that for the same natural
frequency, the critical speed for moving mass
problem is smaller than that of the moving force
problem. Hence, resonance is reached earlier
in moving mass problem. The authors [12]
also studied dynamic response of prestressed
Rayleigh beam resting on elastic foundation
and subjected to masses travelling at varying
velocity. Omolofe and Ogunyebi [13] studied
the dynamic behavior of a rotating Timoshenko
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beam when under the actions of a variable
magnitude load moving at non-uniform speed.
Adedowole [14] also consider flexural vibration of
non prismatic Rayleigh beam with non uniform
prestress under concentrated loads moving
with variable velocity.

Thus, this work is concerned with the dynamics
analysis of a damped non uniform beam under
the actions of loads traveling with variable
velocity. The main objective of this paper is to
provide a closed form solution to this problem
and to classify the effect of various parameters

of the dynamical system on the response of the
beam.

2 FORMULATION OF THE
INITIAL BOUNDARY VALUE
PROBLEM

The motion of a Bernoulli-Euler beam resting on
an elastic foundation and under the action of a
load moving with variable velocity is governed by
the partial differential equation

− ∂Q(x, t)
∂x

+µ (x)
∂2w(x, t)

∂t2
−N (x)

∂2w(x, t)
∂x2

+b (x)
∂w(x, t)

∂t
+Kw(x, t)− q(x, t) = 0 (2.1)

Q (x, t) =
∂D(x, t)

∂x
(2.2)

Where Q (x, t) is the shear force, q (x, t) is the constant moving concentrated load moving with variable
velocity acting on the beam, µ is the mass of the beam per unit length L,b is the material damping
intensity, w (x, t) is the vertical response of the beam, D (x, t) is the flexural moment and t is time.
The flexural moment acting on the beam across section is related to the vertical response as

D (x, t) = −EI (x) ∂
2w(x, t)
∂x2

(2.3)

Where EI (x) the flexural rigidity of the beam, E is the young modulus

N (x) is the non-uniform axial force, x and t are the spatial and time coordinates respective. The
structure under consideration is simply supported and carrying a concentrated mass M, which is
moving at variable velocity.

2.1 The Boundary Conditions
The boundary conditions depend on the constraints at the beam ends, however for a simply supported
beam whose length is L, the vertical displacement at the beam ends are given as:

w (0, t) = w (L,t) = 0 (2.4)

w′′ (0, t) = w′′ (L,t) = 0 (2.5)
where dash means derivative with respect to x

It is assumed that the initial conditions are

w (x,0) = 0 =
∂2w (x,0)

∂t2
(2.6)

The body moves with non-uniform velocity such that the motion of the contact of the moving load is
given by

Xp = f (t) (2.7)
The distance covered by the load on the same structure at any given instance of time t is given as

f (t) = xo + x1 (2.8)
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where x0 and x1 are initial position and position at
any of the moving load. For the variable moment
of inertia I, the mass per unit length µ , and the
material damping intensity b of the beam, we
adopt the example in [14] and take I(x), µ(x) and
b(x) to be of the form,

I(x) = Io

(
1+ sin

πx
L

)3
(2.9)

µ(x) = µo

(
1+ sin

πx
L

)
(2.10)

and

b(x) = bo

(
1+ sin

πx
L

)
(2.11)

In this paper, the non-uniform axial force is
defined as [15] N (x)

N (x) =No

(
1+ sin

πx
L

)
(2.12)

In what follows, two special cases of equation
(2.1) are considered. They are termed constant
load and Harmonic load problems.

2.2 Case I

2.2.1 The dynamic response of
non uniform beam under the
actions of constant magnitude
mobile concentrated forces

The concentrated mobile force q(x, t) in equation
(2.1) is assumed to be moving at variable
velocities is given by

q(x, t) = Poδ {x − (xo + x1)} (2.13)

and x1 is defined as

x1 = β sinαt (2.14)

where xo is the equilibrium position of the
longitudinal oscillating load, βis the longitudinal
amplitude of oscillation of the load and α is the
longitudinal frequency of the load.

When equations (2.2),(2.3), (2.9), (2.11),(2.12)
and (2.13) are substituted into equation (2.1), the
result is a non- homogeneous system of partial
differential equation with variable coefficients
given by

EIo
∂2

∂x2

[(
1+ sin

πx
L

)3 ∂2w(x, t)
∂x2

]
+µo

(
1+ sin

πx
L

) ∂2w(x, t)
∂t2

+ bo

(
1+ sin

πx
L

) ∂w(x, t)
∂t

−N
(
1+ sin

πx
L

) ∂2w (x, t)
∂x2

+K0w(x, t) = Poδ {x − (xo + β sinαt)}
(2.15)

In the equation (2.15) above, a closed from solution to the fourth order partial differential equation
governing the motion of the beam under the action of concentrated moving does not exist. Consequently,
an approximate analytical solution is desirable to obtain some vital information about the vibrating
system.

2.3 Approximate Analytical Solution
To solve the beam problem above in equation (2.15), we shall use the versatile solution technique
called Galerkin’s method often used in solving diverse problems involving mechanical vibrations [11].
The equation of the motion of an element of the beam is generally symbolically written in the form.

Γw(x, t)− q(x, t) = 0 (2.16)

where Γ is the differential operator with variable coefficients, w(x, t) is the beam displacement, q(x,t)
is the load acting on the beam, x and t are spatial coordinates and time respectively. The solutions of
the system of equation (2.15) is expressed as

w(x, t) =
n∑
i=1

yi (t)Qi (x) (2.17)
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where yi (t) are coordinates in modal space andQi (x)are the normal modes of free vibration written
as

Qi (x) = sinθix+Ai cosθix+Bi sinhθix+Ci coshθix (2.18)

where the constant, Ai ,Bi andCi , define the space and amplitude of the beam vibration. Their values
depend on the boundary condition associated with the structure. Thus, for a simply supported beam,
it can be shown that

Ai = Bi = Ci = 0 and θi =
iπ
L

(2.19)

Thus, for a beam with simple supports at both ends, equation (2.18) takes the form

Qi (x) = sin
iπx
L

(2.20)

Thus in view of equation (2.20) the transverse displacement response of a simply supported elastic
beam, using an assumed mode method can be written as

w(x, t) =
n∑
i=1

yi (t)sin
iπx
L

(2.21)

Substituting equation (2.21) into the governing equation (2.15) and after some simplifications and
arrangements one obtains

EIo
4

(10− 6cos πxL +15sin
πx
L
− sin 3πx

L

) ∂4

∂x4

∞∑
i=1

yi (t)sin
iπx
L


+
3π
L

(
sin

3πx
L

+5cos
πx
L
− cos 3πx

L

) ∂3

∂x3

∞∑
i=1

yi (t)sin
iπx
L

+3
(π
L

)2 (
8cos

2πx
L
− 5sin πx

L
+3sin

3πx
L

) ∂2

∂x2

∞∑
i=1

yi (t)sin
iπx
L

+µo
(
1+ sin

πx
L

) ∂2

∂x2

n∑
i=1

yi (t)sin
iπx
L

+bo
(
1+ sin

πx
L

) ∂
∂t

n∑
i=1

yi (t)sin
iπx
L

−N
(
1+ sin

πx
L

) ∂2

∂x2

n∑
i=1

yi (t)sin
iπx
L

+K
n∑
i=1

yi (t)sin
iπx
L

= Poδ {x − (xo + β sinαt)}

(2.22)

Subjecting equation (2.22) to further simplification, one obtains

EIo
4

[
R1 (x)

( iπx
L

)4
sin

iπx

L
−R2 (x)

( iπx
L

)3
cos

iπx

L
−R3 (x)

( iπx
L

)2
sin

iπx

L

]
yi (t)

+µoR4 (x) ÿi (t)sin
iπx

L
+ boR4 (x) ẏi (t)sin

iπx

L

+No

( iπ
L

)2
R4 (x)yi (t)sin

iπx
L

+Kyi (t)sin
iπx
L

= Poδ {x − (xo + β sinαt)}

(2.23)

where

R1 (x) =
(
10− 6cos πx

L +15sin πx
L − sin

3πx
L

)
R2 (x) =

3π
L

(
sin 3πx

L +5cos πx
L − cos

3πx
L

)
R3 (x) = 3

(
π
L

)2 (
8cos 2πx

L − 5sin
πx
L +3sin 3πx

L

)
R4 (x) =

(
1+ sin πx

L

)
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To determine Pi (t), the expression on the left hand side of equation (2.12) is required to be orthogona
to the functions sin kπx

L Thus,

∫ L

0

n∑
i=1

{
EIo
4

[
R1 (x)

( iπx
L

)4
sin

iπx
L
−R2 (x)

( iπx
L

)3
cos

iπx
L
−R3 (x)

( iπx
L

)2
sin

iπx
L

]
yi (t)

+µoR4 (x) ÿi (t)sin
iπx
L

+ boR4 (x) ẏi (t)sin
iπx
L

+No

( iπ
L

)2
R4 (x)yi (t)sin

iπx
L

+Kyi (t)sin
iπx
L

}
sin

kπx
L

=
∫ L

0
Poδ {x − (xo + β sinαt)}sin

kπx
L

(2.24)

From the right hand side of equation (2.24), we have

sinαt = αt − (αt)3

3! + (αt)5

5! −
(αt)7

7! + (αt)9

9!

Since αand t are considerably small, therefore sinαt can be approximated to αt in this study

Equation (2.24) after some rearrangements and simplifications yields

D1 (i,k) ÿi (t) +D2 (i,k) ẏi (t) +D3 (i,k)yi (t) = Po sin
kπ (xo + β sinαt)

L
(2.25)

where

D1 (i,k) = µo [I1 + I3]; D2 (i,k) = εoI1; D3 (i,k) =
EIo
4 [E1 −E2 −E3] +E4 +E5

E1 =
( iπ
L

)4
[10I1 − 6I2 +15I3 − I4] ; E2 = 3i3

(π
L

)4
[4I5 +5I6 − I7] (2.26)

E3 = 3i2
(π
L

)4
[8I2 − 5I3 +3I4] ; E4 =

( iπ
L

)2
[I1 + I3] ; E5 = KI1 (2.27)

The integrals Ii are as follow

I1 =
∫ L

0
sin

iπx
L

sin
kπx
L

dx; I2 =
∫ L

0
cos

2πx
L

sin
iπx
L

sin
kπx
L

dx

I3 =
∫ L

0
sin

πx
L

sin
iπx
L

sin
kπx
L

dx; I4 =
∫ L

0
sin

3πx
L

sin
iπx
L

sin
kπx
L

dx

I5 =
∫ L

0
sin

2πx
L

cos
iπx
L

sin
kπx
L

dx; I6 =
∫ L

0
cos

πx
L

cos
iπx
L

sin
kπx
L

dx

I7 =
∫ L

0
cos

3πx
L

cos
iπx

L
sin

kπx

L
dx (2.28)

Equation (2.25) is a second order differential equation with constant coefficients.

In what follows, we subject the system of ordinary differential equation (2.25) to Laplace transform
defined as

(∼) =
∫ ∞
◦

(·)e−stdt (2.29)
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where s is the Laplace parameter applying the initial condition (2.6), we obtain

(D1 (i,k)S
2 +D2 (i,k)S +D3 (i,k))yi (s) = P0

[
b0

S

S2 +γ2
o
− a0

γo
S2 +γ2

o

]
(2.30)

where

γo =
kπβα

L
,ao = sin

kπxo
L

,bo = cos
kπxo
L

(2.31)

Subjecting equation (2.30) to some simplifications and rearrangements gives

yi (s) = P0

[
b0

s

s2 +γ2
o
− a0

γo
s2 +γ2

o

]
1

(D1 (i,k)s2 +D2 (i,k)s+D3 (i,k))
(2.32)

which reduces to

yi (S) =
P0

(β1 − β2)

(
1

S − β1
− 1
S − β2

)[
b0

S

S2 +γ2
o
− a0

γo
S2 +γ2

o

]
(2.33)

where

β1 =
−D2 +

√
D2
2 − 4D1D3

2D1
and β2 =

−D2 −
√
D2
2 − 4D1D3

2D1
(2.34)

To obtain the Laplace inversion of (2.33), the following representation is adopted.

g1(s) =
s

s2 +γ2 , g2(s) =
γ

s2 +γ2 , f1(s) =
β1

s − β1
and f2(s) =

β2
s − β2

(2.35)

So that the Laplace invasion of (2.33) is the convolution of f i
′
s and g defined by

fs ∗ g =
∫ t

0
fi (t −u)g(u)du, i = 1,2 (2.36)

Thus, the Laplace inversion of equation (2.33) is given by

yi (t) = Pp

[
eβ1t

β1
(boI8 − aoI9)−

eβ2t

β2
(boI10 − aoI11)

]
(2.37)

where
Pp =

P0
(β1 + β2)

(2.38)

I8 =
∫ t

0
e−β1u cosγudu; I9 =

∫ t

0
e−β1u sinγudu

I10 =
∫ t

0
e−β2u cosγudu; I11 =

∫ t

0
e−β2u sinγudu (2.39)

Evaluating the integrals (2.39) above, we obtain

I8 =
1

(γ2 + β21 )

(
−γeβ1t sinγt + β1 − β1eβ1t cosγt

)
(2.40)

I9 =
1

(γ2 + β21 )

(
−γe−β1t cosγt +γ − β1e−β1t sinγt

)
(2.41)

I10 =
1

(γ2 + β22 )

(
−γeβ2t sinγt + β2 − β2eβ2t cosγt

)
(2.42)
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I11 =
1

(γ2 + β22 )

(
−γe−β2t cosγt +γ − β2e−β2t sinγt

)
(2.43)

Subjecting equation (2.39) to some simplifications and rearrangements yields,

yi (t) = Pp


 eβ1t

β1(γ2 + β21 )
ao

(
−γeβ1t sinγt + β1 − β1eβ1t cosγt

)
−bo

(
−γe−β1t cosγt +γ − β1e−β1t sinγt

))
−
 eβ2t

β2(γ2 + β22 )
ao

(
−γeβ2t sinγt + β2 − β2eβ2t cosγt

)
+bo

(
−γe−β2t cosγt +γ − β2e−β2t sinγt

) ) }
(2.44)

which on inversion yields

w(x, t) =
n∑
i=1

Pp


 eβ1t

β1(γ2 + β21 )
ao

(
−γeβ1t sinγt + β1 − β1eβ1t cosγt

)
−bo

(
−γe−β1t cosγt +γ − β1e−β1t sinγt

))
−
 eβ2t

β2(γ2 + β22 )
ao

(
−γeβ2t sinγt + β2 − β2eβ2t cosγt

)
+bo

(
−γe−β2t cosγt +γ − β2e−β2t sinγt

) ) }
sin

iπx
L

(2.45)

Equation (2.45) represents the transverse displacement response of the damped beam with non
uniform axial force subjected to the action of fast constant mobile concentrated forces with variable
velocities.

2.4 Case II

2.4.1 The dynamic response of damped beam under the actions of harmonic
magnitude mobile concentrated forces with variable velocity

Here, the moving force q(x,t) is given as

q(x, t) = Po sinωtδ {x − (xo + β sinαt)} (2.46)

where all parameters are as defined as before. Thus in view of equation (2.1) taking into account
(2.46) one obtains

l−∂Q(x, t)
∂x

+µ (x)
∂2w(x, t)

∂t2
+ b (x)

∂w(x, t)
∂t

−N (x)
∂2w(x, t)

∂x2
+Kw(x, t)= Po sinωtδ {x − (xo + β sinαt)}

(2.47)

Equation (2.47) is the governing equation describing the motion of non- uniform elastic beam subjected
to mobile forces of varying magnitude. Like in the previous section, a closed form solution to equation
(2.47) is sought. To this effect, use is made of an assumed mode method already alluded to and
by this method, the transverse deflection wa(x, t) of non-uniform beam under the action of variable
magnitude mobile force can be written as

wa(x, t) =
∞∑

m=1

ym(t)Qm(x) (2.48)

8
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where ym(t) are coordinates in modal space and Qm(x) are the normal modes of free vibration. Thus
for a simply supported beam equation (2.48) becomes

wa(x, t) =
∞∑

m=1

ym(t)sin
mπx

L
(2.49)

Using equation (2.49) in equation (2.47) and following the same arguments as in the previous section
and after some simplifications and rearrangements one obtains

∞∑
m=1

{D1 (m,k) ÿm (t) +D2 (m,k) ẏm (t) +D3 (m,k)ym (t)} = Po sinωt sin
kπ(xo + β sinαt)

L
(2.50)

Without loss of generality, considering only the mth particle of the dynamical system yields

D1 (m,k) P̈m (t) +D2 (m,k) Ṗm (t) +D3 (m,k)Pm (t) = Po sinωt sin
kπ(xo + β sinαt)

L
(2.51)

Subjecting equation (2.51) as defined previously yields

ym(S) = Pp

 1
ϕ1

ao  Ω1

S2 +Ω2
1

·
ϕ1

S −ϕ1
+

Ω2

S2 +Ω2
2

·
ϕ1

S −ϕ1

 −bo

 s

S2 +Ω2
1

·
ϕ1

S −ϕ1
+

s

S2 +Ω2
2

·
ϕ1

S −ϕ1


− 1
α2

ao  Ω1

S2 +Ω2
1

·
ϕ2

S −ϕ2
+

Ω2

S2 +Ω2
2

·
ϕ2

S −ϕ2

 −bo

 s

S2 +Ω2
1

·
ϕ2

S −ϕ2
+

s

S2 +Ω2
2

·
ϕ2

S −ϕ2




(2.52)
Where

ϕ1 =
−D2 +

√
D2
2 − 4D1D3

2D1
and ϕ2 =

−D2 −
√
D2
2 − 4D1D3

2D1

Ω1 = ω+
kπγ

L
and Ω2 =ω −

kπγ

L

(2.53)

Equation (2.52) is analogous to equation (2.44) subjecting equation (2.52) to Laplace transform in
conjunction with the boundary condition (2.2) and using convolution theory yields

ym(t) = Pp

 eϕ1t

ϕ1

⟨ ao
(Ω2

1 +ϕ2
1)

(
−Ω1e

−ϕ1t cosΩ1t +Ω1 −ϕ1e
−ϕ1t sinΩ1t

)
+

ao
(Ω2

2 +ϕ2
1)

(
−Ω2e

−ϕ1t cosΩ2t +Ω2 −ϕ1e
−ϕ1t sinΩ2t

)
+

 bo
(Ω2

1 +ϕ2
1)

(
−Ω1e

ϕ1t sinΩ1t +ϕ1 − β1eϕ1t cosΩ1t
)

− bo
(Ω2

2 +ϕ2
1)

(
−Ω2e

ϕ1t sinΩ2t +ϕ1 −ϕ1e
ϕ1t cosΩ2t

)⟩
− e

ϕ1t

ϕ2

⟨ ao
(Ω2

1 +ϕ2
2)

(
−Ω1e

−ϕ2t cosΩ1t +Ω1 −ϕ2e
−ϕ2t sinΩ1t

)
+

ao
(Ω2

2 +ϕ2
2)

(
−Ω2e

−ϕ2t cosΩ2t +Ω2 −ϕ2e
−ϕ2t sinΩ2t

)
+

 bo
(Ω2

1 +ϕ2
2)

(
−Ω1e

ϕ2t sinΩ1t +ϕ2 − β2eϕ2t cosΩ1t
)

− bo
(Ω2

1 +ϕ2
2)

(
−Ω1e

ϕ2t sinΩ1t +ϕ2 − β2eϕ2t cosΩ1t
)⟩



(2.54)
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which on inversion yields

wa(x, t) =
n∑

m=1

Pp

 eϕ1t

ϕ1

⟨ ao
(Ω2

1 +ϕ2
1)

(
−Ω1e

−ϕ1t cosΩ1t +Ω1 −ϕ1e
−ϕ1t sinΩ1t

)
+

ao
(Ω2

2 +ϕ2
1)

(
−Ω2e

−ϕ1t cosΩ2t +Ω2 −ϕ1e
−ϕ1t sinΩ2t

)
+

 bo
(Ω2

1 +ϕ2
1)

(
−Ω1e

ϕ1t sinΩ1t +ϕ1 − β1eϕ1t cosΩ1t
)

− bo
(Ω2

2 +ϕ2
1)

(
−Ω2e

ϕ1t sinΩ2t +ϕ1 −ϕ1e
ϕ1t cosΩ2t

)⟩
− e

ϕ1t

ϕ2

⟨ ao
(Ω2

1 +ϕ2
2)

(
−Ω1e

−ϕ2t cosΩ1t +Ω1 −ϕ2e
−ϕ2t sinΩ1t

)
+

ao
(Ω2

2 +ϕ2
2)

(
−Ω2e

−ϕ2t cosΩ2t +Ω2 −ϕ2e
−ϕ2t sinΩ2t

)
+

 bo
(Ω2

1 +ϕ2
2)

(
−Ω1e

ϕ2t sinΩ1t +ϕ2 − β2eϕ2t cosΩ1t
)

− bo
(Ω2

1 +ϕ2
2)

(
−Ω1e

ϕ2t sinΩ1t +ϕ2 − β2eϕ2t cosΩ1t
)⟩

sin mπx
L

(2.55)

3 RESULTS AND DISCUSSION

3.1 Discussion on the Closed form Solution
The displacement response of an engineering structure under excitation may grow without bound
and when this happens it leads to the occurrence called resonance. The effects of this occurrence on
dynamical system could be devastating. In particular, it causes cracks, permanent deformation and
destruction in structures and makes the structural systems unsaved for its occupants. Thus, it is very
pertinent at this juncture to establish the conditions under which this undesirable phenomenon may
occur. Equation (2.45) clearly shows that the non-uniform elastic beam resting on elastic foundation
will experience resonance effects whenever

β1 = β2, β21 = −γ2 or β22 = −γ2 (3.1)

While equation (2.55) shows that the same beam under the action of harmonic variable magnitude
moving loads will experience resonance effects whenever

ϕ1 = ϕ2, ϕ2
1 = −Ω2

1 or ϕ2
2 = −Ω2

1 and also ϕ2
1 = −Ω2

2 or ϕ2
2 = −Ω2

2 (3.2)

It is also observed that as the foundation modulli increases the critical speed of the dynamical system
increases thereby reducing the risk of resonant effects.
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3.2 Comments on the Numerical
Results

The theory presented in this paper is illustrated
numerically. The velocity of the moving load
and the length of the beam are respectively
v = 8.128m/s and L = 12.192. The values
of foundation modulli K are varied between
0 N/m3 and 4000000 N/m3. Figs. 1 and 5
display the deflection profile of an elastic beams
resting on elastic foundation and subjected
to constant and variable magnitude moving
load. The figures show that as the value of
foundation stiffness K increases the deflection
of the beam at various time t decreases. Fig.
2 shows the deflection profile of the simply
supported beam under constant magnitude
load for various values of axial force and fixed
value of foundation stiffnessK = 40000. It
is observed that the higher values of axial
force reduce the deflection of the beam. Fig.
6 depicts similar behavior for the transverse
displacement of simply supported beam under
the action of harmonic variable magnitude loads
moving at variable velocity for various values
of axial force N. Figs. 3 and 7 display the
response amplitudes of simply supported beam
respectively to constant and harmonic variable

magnitude loads travelling at variable velocity for
various values of longitudinal amplitude β and
fixed values of foundation stiffness K = 40000
and axial force N = 20000. The figures clearly
show that the response amplitude of the simply
supported non uniform beam under the action of
both constant and harmonic variable magnitude
loads travelling at variable velocity decrease
with increase in the values of longitudinal
amplitude β. Also Figs. 4 and 8 depict the
transverse displacement response amplitude of
simply supported Rayleigh beam to constant and
harmonic variable magnitude loads travelling
at variable velocity for various values of load
longitudinal frequency and for fixed values of
foundation stiffness K = 40000 and axial force
N = 20000. It is observed from this figure that
higher values of the load longitudinal frequency
α produce more stabilizing effects on the elastic
beam.

Finally, Figs. 9 and 10 depicts the comparison
of the response amplitude of a simply
supported non uniform Rayleigh beam resting
on elastic foundation and subjected to constant
and variable magnitude moving loads and
exact/numerical comparison for fixed values of
axial force N = 40000 and foundation modulus
K= 50000.

Fig. 1. Deflection profile of a simply supported non- uniform beam under the actions of
constant forces travelling at variable velocity for various values of foundation modulus K and

fixed value axial force N= 50000
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Fig. 2. Response amplitude of a simply supported non uniform beam under the actions of
constant forces travelling at variable velocity for various value foundation modulus k=40000

Fig. 3. The response amplitude of a non uniform beam resting on elastic foundation and
under the actions of constant magnitude moving load for various values of longitudinal

amplitude of oscillation of the load

Fig. 4. The displacement response of a non uniform beam resting on elastic foundation and
subjected to constant magnitude moving load for various values of longitudinal frequency of

the load α
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Fig. 5. Response amplitude of a simply supported non uniform beam under the action of
harmonic force travelling at variable velocity for various values of foundation modulus and

for fixed value axial force N= 40000

Fig. 6. Response amplitude of a simply supported non uniform beam under the action of
harmonic load travelling at variable velocity for various values axial force of and for fixed

value foundation modulus K

Fig. 7. The response amplitude of a non uniform beam resting on elastic foundation and
under the actions of variable magnitude moving load for various values of longitudinal

amplitude of oscillation of the load
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Fig. 8. The displacement response of a non uniform beam resting on elastic foundation and
subjected to variable magnitude moving load for various values of longitudinal frequency of

the load α

Fig. 9. Comparison of the displacement response of constant load and harmonic load cases
of a non uniform simply supported beam for fixed values of K= 40000 and N=40000

Fig. 10. Comparison of the displacement response of exact solution and numerical solution
cases of a non uniform simply supported beam for fixed values of K= 40000 and N=40000
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4 CONCLUSIONS

In this paper, a procedure involving the Galerkin’s
method and integral transform technique has
been used to solve the problem of a non-uniform
beam when it is subjected to constant and
harmonic variable magnitude moving loads. The
objective is to study the behavior of the dynamical
system. In particular, analytical solution in series
form is obtained for the deflection of the elastic
beam and the effects of foundation stiffness K
and the axial force N on the vibrating system are
investigated. Analytical solution and numerical
result in plotted curves show that as the value of
foundation stiffness K and axial force N increase,
the deflection profile of the non-uniform beam
decreases. Thus, in general, higher values of
foundation stiffness K and axial force N reduce
the risk of resonance in a dynamical system
involving non-uniform beam under the action of a
moving load.
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